CHAPTER

4

Higher Order Linear Equations

1. The differential equation is in standard form. Its coefficients, as well as the
function ¢(t) = ¢, are continuous everywhere. Hence solutions are valid on the
entire real line.

3. Writing the equation in standard form, the coefficients are rational functions
with singularities at £ = 0 and ¢t = 1. Hence the solutions are valid on the intervals
(=00,0), (0,1), and (1,00).

5. Writing the equation in standard form, the coefficients are rational functions
with a singularity at z¢g = 1. Furthermore, ps(z) = tan /(z — 1) is undefined,
and hence not continuous, at z = £(2k + 1)7/2, k=0,1,2,.... Hence solutions
are defined on any interval that does not contain xy or xy .

6. Writing the equation in standard form, the coefficients are rational functions with
singularities at x = +2. Hence the solutions are valid on the intervals (—oo, — 2),
(—=2,2), and (2,00).

7. Evaluating the Wronskian of the three functions, W(f1, f2, f3) = —14. Hence
the functions are linearly independent.

9. Evaluating the Wronskian of the four functions, W(fi, f2, fs, f4) = 0. Hence
the functions are linearly dependent. To find a linear relation among the functions,
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we need to find constants ¢y, ca, ¢3, ¢4, not all zero, such that
c1fi(t) + cafa(t) + s fs(t) +cafa(t) =0.
Collecting the common terms, we obtain
(co +2¢3 + cy)t? +(2¢1 — 3+ cy)t + (=3c1 +ca+¢4) =0,

which results in three equations in four unknowns. Arbitrarily setting ¢4 = —1,
we can solve the equations ¢y +2c3 =1, 2¢; —c3 =1, —3¢1 +c2 = 1, to find that
c1=2/7, co =13/7, c3 = —3/7. Hence

2f1(8) + 13fa(t) — 3f3(t) — Tfa(t) = 0.

10. Evaluating the Wronskian of the three functions, W (fi, f2, f3) = 156 . Hence
the functions are linearly independent.

11. Substitution verifies that the functions are solutions of the differential equation.
Furthermore, we have W(1,cos t,sin t) = 1.

12. Substitution verifies that the functions are solutions of the differential equation.
Furthermore, we have W(1,t,cos t,sin t) = 1.

14. Substitution verifies that the functions are solutions of the differential equation.
Furthermore, we have W (1,t,e~t te™t) = e= 2.

15. Substitution verifies that the functions are solutions of the differential equation.
Furthermore, we have W (1,2, 23) = 6z .

16. Substitution verifies that the functions are solutions of the differential equation.
Furthermore, we have W (z,z2,1/x) = 6/x .

18. The operation of taking a derivative is linear, and hence (ci1y; + Czyg)(k) =

clygc) + czyék). It follows that

Llciyi + coya] = Cly§n) + C2y§n) +p1(Cly§n71) + C2y§n71)) + ... Fpalciyr + c2yo).

Rearranging the terms, we obtain L [c1y1 + caye] = c1L [y1] + c2 L [y2]. Since y; and
y2 are solutions, L [c1y1 + cay2] = 0. The rest follows by induction.

20.(a) Let f(t) and g(t) be arbitrary functions. Then W(f,g) = fg' — f'g. Hence
W'(f.9)=1Ff'g"+fg"—f"9—1f'9"=fg” — f"g. That is,

W'(f,g) = ’ff// gg// .

Now expand the 3-by-3 determinant as
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Differentiating, we obtain

/ ’ / / / /
W’ =/ Y2 Y3l Y1 Y iYL Yol
(ylv Y2, yS) Y1 yz// y?:/ 2 yll/ yé’ Ys ylll yz//
/ / / / / /
Y2 Y3 Y1 3 Y1 2
+ — + .
1 2/// yg/// Y2 yl/// yé// Y3 yl/// y2///

The second line follows from the observation above. Now we find that

, y1/ yz’/ y?f 1 Y2 Y3
Wiy, y2,y3) = |vi Y5 ya|+|vi Ys Y3

1 " " "

vi'oys o ovd| |l oy s

Hence the assertion is true, since the first determinant is equal to zero.

(b) Based on the properties of determinants,

P3yr DP3Y2 P3Y3
p2(t)p3s(O)W' = |p2yi{ p2ys pP2ys3|.
yl/// y2/// y3/I/
Adding the first two rows to the third row does not change the value of the deter-
minant. Since the functions are assumed to be solutions of the given ODE, addition

of the rows results in

, P3 Y1 P3 Y2 P3Y3
p2(Ops(OOW' = | p2yi  p2ys  D2Y3
—-pyl —piys —p1ys

It follows that po(¢)ps(H)W' = —p1(t)p2(t)p3(t)W . As long as the coefficients are
not zero, we obtain W' = —p;(t)W.

(c) The first order equation W' = —p; (t)W is linear, with integrating factor u(t) =
el P14t Hence W(t) = ce~ /11t Furthermore, W (t) is zero only if ¢ = 0.

(d) It can be shown, by mathematical induction, that

U1 Y2 s Yn—1 Yn
yi Yz Yno1i Yn
W/(yl,y%"'vyn): .
y%n—?) yén—Q) y(n—12) y’gn—Q)
- '
R N T 8

Based on the reasoning in part (b), it follows that

pa(t)ps(t) ... pn (W' = —p1(t)p2(t)p3(t) . .. pu ()W,
and hence W' = —p;(t)IWV.

21. Inspection of the coefficients reveals that p;(¢) = 2. Based on Problem 20, we
find that W’ = —2W, and hence W = ce~%.
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22. Inspection of the coefficients reveals that p;(¢) = 0. Based on Problem 20, we
find that W' = 0, and hence W = c.

24. Writing the equation in standard form, we find that p;(t) = 1/t. Using Abel’s
formula, the Wronskian has the form W(t) = ceJ1/tdt = ce=Int — ¢/t

26. Let y(t) = y1(t)v(t). Then y' =yjv+y1v’, y”" =y{'v+2y{v' +y1v”, and
y" =y{"v+3y{"v' + 3y{v"” + y1v”’. Substitution into the ODE results in

n 1.1

yi"v + 3y{"v’ + 3y{v” +y1v” + 1 [yv + 2y{v’ + 0" +
+p2 [y{v + y1v'] + psyrv = 0.

Since y; is assumed to be a solution, all terms containing the factor v(¢) vanish.
Hence

y1v" 4+ [pryr + 3yl v + Byl + 2p1y{ + payn]v’ =0,

which is a second order ODE in the variable v = v’.

28. First write the equation in standard form:
2 1
" t(tti Y t;ét—: Y - t2(t6+ 5¢ ="
Let y(t) = t?v(t). Substitution into the given ODE results in
t(t+4) o
t+3
Set w = v”. Then w is a solution of the first order differential equation

t44
t(t+3)

t2v///+3 =0.

w' +3 w=0.

This equation is linear, with integrating factor u(t) = t*/(t + 3). The general so-
lution is w = c(t + 3)/t*. Integrating twice, v(t) = c1t~! + c1t 72 + cot + c3. Hence
y(t) = cit + c1 + cot® + c3t?. Finally, since y;(t) = t? and y»(t) = t3 are given so-
lutions, the third independent solution is y3(t) = ¢1t + ¢;.

1. The magnitude of 1 +i is R = v/2 and the polar angle is 7/4. Hence the polar
form is given by 1+ i = /2 ™/4.

3. The magnitude of —3 is R = 3 and the polar angle is 7. Hence —3 = 3 ¢'".

4. The magnitude of —i is R = 1 and the polar angle is 37/2. Hence —i = ¢37%/2,

5. The magnitude of v/3 — i is R = 2 and the polar angle is —7/6 = 117/6 . Hence
the polar form is given by /3 —i = 2e!17/6,
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6. The magnitude of —1 —i is R = V2 and the polar angle is 57/4. Hence the
polar form is given by —1 —i = /2 57/4,

7. Writing the complex number in polar form, 1 = e>™™ where m may be any
integer. Thus 1'/3 = 2™7/3_ Setting m = 0, 1,2 successively, we obtain the three
roots as 11/3 =1, 11/3 = ¢27i/3 11/3 = ¢47/3_ Equivalently, the roots can also be
written as 1, cos(2m/3) +i sin(27/3) = (=1 +iv/3)/2, cos(4m/3) + isin(4m/3) =
(-1 —iV3)/2.

9. Writing the complex number in polar form, 1 = e*™™ where m may be any
integer. Thus 1Y/4 = e2™7™/4 Setting m = 0, 1,2, 3 successively, we obtain the
three roots as 11/4 =1, 11/4 = ¢mi/2 11/4 = ¢ 11/4 = ¢37/2 Equivalently, the
roots can also be written as 1, cos(w/2) + i sin(7/2) =i, cos(w) + isin(r) = —1,
cos(3m/2) + isin(37/2) = —i.

10. In polar form, 2(cos 7/3 + i sin 7/3) = 2e*(*/3+2m™) in which m is any integer.
Thus [2(cos m/3 + i sin 7r/3)]1/2 = 21/2 ¢i(/6+mm) - With m = 0, one square root
is given by 21/2¢"/6 = (/3 4+4)/v/2. With m = 1, the other root is given by
21/2 ei?w/ﬁ — (_\/?T _ Z)/ﬂ

11. The characteristic equation is r® —r? —r +1 = 0. The roots are r = —1,1, 1.
One root is repeated, hence the general solution is y = cie™ + coet + catel.

13. The characteristic equation is 73 — 2r2 —r +2 =0, with roots r = —1,1,2.
The roots are real and distinct, so the general solution is y = c1e ™" + cpe? + c3e?t.

14. The characteristic equation can be written as r?(r? — 4r +4) = 0. The roots
are r = 0,0,2,2. There are two repeated roots, and hence the general solution is
given by y = ¢1 + cot + cze?t + cqte?.

16. The characteristic equation can be written as (72 — 1)(r? —4) = 0. The roots
are given by r = +1,+ 2. The roots are real and distinct, hence the general solution
is y = cre”t + coet + c5e™ 2 + cqe?t.

17. The characteristic equation can be written as (r> —1)> = 0. The roots are
given by r =41 , each with multiplicity three. Hence the general solution is
Yy = cret 4+ cote™t 4 cgt?et + cuel + cstet + cgt?el.

18. The characteristic equation can be written as r?(r* — 1) = 0. The roots are
given by 7 =0,0,£1,4+4. The general solution is y = c¢; + cot + cze™! + cget +
cscost+cgsint.

19. The characteristic equation can be written as r(r* — 3r3 4+ 3r2 — 3r +2) =
0. Examining the coefficients, it follows that r* — 3r3 +3r2 = 3r +2 = (r — 1)(r —
2)(r? +1). Hence the roots are r = 0,1,2, 4. The general solution of the ODE is
given by y = c¢; + coet +c3e? +cycos t +cssin t.

20. The characteristic equation can be written as r(r® — 8) = 0, with roots r = 0,
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2e2m7/3 m =0,1,2. That is, r = 0,2, —1 + iv/3 . Hence the general solution is
y=ocy +coe?t fet [c;»,cosﬁt—&—qsinﬁt]

21. The characteristic equation can be written as (r* 4+ 4)2 = 0. The roots of the
equation 7* +4 =0 are r =1 £+ i, —1 + i. Each of these roots has multiplicity
two. The general solution is y = e’ [c; cos t + cosin t] + te' [c3 cos t + casin t] +
e tescos t+cgsin t] +te ! [cycos t + cgsin t].

22. The characteristic equation can be written as (r2+1)2 =0. The roots are
given by r = 4+, each with multiplicity two. The general solution is y = ¢y cos t +
cosin t+ ¢ [c3 cos t + cqsin t].

24. The characteristic equation is 73 + 572 + 6r +2 = 0. Examining the coeffi-
cients, we find that 73+ 5r? + 6r + 2 = (r + 1)(r? 4+ 4r + 2). Hence the roots are
deduced as r = —1, —2 £ /2 . The general solution is y = cie~t + coe(~2FV2t 4
cze(72=V2)t,

25. The characteristic equation is 1873 + 2172 4+ 14r +4 = 0. By examining the
first and last coefficients, we find that 1873 4 2172 4+ 14r + 4 = (2r + 1)(9r? 4 6r +
4). Hence the roots are r = —1/2, (—1 + v/34)/3. The general solution of the ODE
is given by y = c1e 2+ e7t/3 [y cos(t/V/3) + ezsin(t/V3)].

26. The characteristic equation is r* — 773 + 612 + 30r — 36 = 0. By examining
the first and last coefficients, we find that r* — 7r3 + 672 +30r — 36 = (r — 3)(r +
2)(r? — 6r +6). The roots are r = —2,3,3 + /3. The general solution is y =
cre 2 4 cpedt 4 c3eBVIE BTV,

28. The characteristic equation is r* 4 673 + 172 + 22r + 14 = 0. It can be shown
that 74+ 6r° + 17r2 + 22r + 14 = (r? + 2r + 2)(r? + 4r + 7). Hence the roots are
r=—1+14, -2 =+ i/3 . The general solution of the euqation is y = e~*(c; cost +
cosint) + e~ (c3cos /3t + cysin/31).

32. The characteristic equation is 73> — 72 +r —1 =0, with roots r =1, 1.
Hence the general solution is y(t) = c¢je’ + ca cos t + cgsin ¢. Invoking the initial
conditions, we obtain the system of equations ¢; +¢co =2, ¢; +¢3 = —1,¢1 —co =
—2, with solution ¢; =0, ¢ =2, ¢cg = —1. Therefore the solution of the initial
value problem is y(t) = 2cos t — sin ¢, which oscillates as t — oo.
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33. The characteristic equation is 2r* — 3 — 9r2 4+ 4r +4 =0, with roots r =
—1/2,1, +2. Hence the general solution is y(t) = cie™*/? + coel + cze™2 4 c4e?t.
Applying the initial conditions, we obtain the system of equations ¢; + ¢ + ¢3 +
Cy = 727 761/2#‘02 7263 +264 == 0, C1/4+CQ +403 +4C4 = 72, 701/84*62 7863 +
8¢y = 0, with solution ¢; = —16/15, ¢ = —2/3, ¢3 = —1/6, ¢4 = —1/10. There-
fore the solution of the initial value problem is y(t) = —(16/15)e~/? — (2/3)e! —
e=2t/6 — €2 /10. The solution decreases without bound.

z
0.2 0.4 0.6 0.8
i i i i
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35. The characteristic equation is 673 + 572 + 7 = 0, with roots r = 0,—-1/3,—1/2.
The general solution is y(t) = ¢ + coe /3 4 c3e7/2. Invoking the initial condi-
tions, we require that ¢; +ca +c3 = =2, —c2/3 —¢3/2 =2, c2/9+ c3/4 =0. The
solution is ¢; = 8, ¢co = —18, c3 = 8. Therefore the solution of the initial value
problem is y(t) = 8 — 18e~*/3 4- 8e~*/2. Tt approaches 8 as t — co.
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36. The general solution is derived in Problem 28 as
y(t) = e "[eicos t +cosin t] + e 2t [03 cosV3t+ cysin V3t .
Invoking the initial conditions, we obtain the system of equations

C1 =+ C3 — ].
—C1 +C2 — 263 + \A‘:’TC4 = -2
—2c5 4¢3 —4V3 ¢4 =0
2¢1 4 2¢5 4+ 10c5 + 9vV3 ¢4 = 3
with solution ¢; = 21/13, ¢; = —38/13, c5 = —8/13, ¢4 = 17/3/39.

19

0.5 4

~0.5 -

The solution is a rapidly decaying oscillation.

40.(a) Suppose that cje™t + coe™! + ... + c,e™! = 0, and each of the ry are real
and different. Multiplying this equation by e~"'*, we obtain that ¢; 4 coe(™2 ") 4
<.+ ¢cpelm=m)t — 0 Differentiation results in

co(re — rl)e(”*”)t + .ot enlrn — Tl)e(’“"frl)t =0.

(b) Now multiplying the latter equation by e~ (r2=m)t and differentiating, we obtain

calrs = 12)(rs = 10)el™ 7 g el = 72 — )™ T = 0.

(c) Following the above steps in a similar manner, it follows that
cn(rn - rnfl) v (Tn - T1>6(Tn_rn—1)t =0.

Since these equations hold for all ¢, and all the r; are different, we have ¢, = 0.
Hence cie™t + coe™! + ...+ ¢, 1™ 11 =0, —oc0<t<o0.

(d) The same procedure can now be repeated, successively, to show that ¢; = ¢y =
...=¢, =0.
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41.(a) Recall the derivative formula

dar n\ d"u n\ dv d" " tu n\ d"v
Zon (W) = (o) Ve T (1) Pl R (n> prrk

Let u= (r —r1)® and v = ¢(r). Note that

CZZL (r=m)*]=s-(s=1)...(s=n+1)(r—r)""
and -
drs [(r—r)’]=s!.
Therefore o
=] =0

only if n < s, since it is assumed that ¢(r1) # 0.

(b) Differential operators commute, so that

o dt ., d¥ det

(Tt = — (Y= (¢ rt .
oraE ¢ ) = qr () = gEte”)
Likewise,
ol db o db et dF
— (— e = —— (— V= — (¥ rt .
o \a ¢ = g o g )

It follows that

6] L rt] __ L J rt
7L =L[ e
(¢) From Eq. (i), we have
aj rt j rt
%[e Z(r) =L[t e"].
Based on the product formula in part (a),

aj rt
i [e Z(r)}

if j <s. Therefore L[t/ "] =0 if j <s.

T=r1

2. The general solution of the homogeneous equation is y. = c1et + coe™ + c3 cos t +
eqsin t. Let g1(t) =3t and go(t) = cos t. By inspection, we find that Y;(t) =

—3t. Since go(t) is a solution of the homogeneous equation, set Y5(t) = t(Acos t +

Bssin t). Substitution into the given ODE and comparing the coefficients of similar

term results in A =0 and B = —1/4. Hence the general solution of the nonhomo-

geneous problem is y(t) = y.(t) — 3t — ¢sin ¢ /4.
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3. The characteristic equation corresponding to the homogeneous problem can be
written as (r + 1)(r? + 1) = 0. The solution of the homogeneous equation is y. =
cre t+cocos t+egsint. Let g1(t) = e~ ! and go(t) = 4t. Since g1 (t) is a solution
of the homogeneous equation, set Y;(t) = Ate~'. Substitution into the ODE results
in A =1/2. Now let Y2(t) = Bt + C. We find that B = —C = 4. Hence the general
solution of the nonhomogeneous problem is y(t) = y.(t) +te™t/2 +4(t — 1).

4. The characteristic equation corresponding to the homogeneous problem can
be written as r(r+ 1)(r —1) = 0. The solution of the homogeneous equation is
Ye = ¢1 + coe! + cge™t. Since g(t) = 2 sin t is not a solution of the homogeneous
problem, we can set Y(t) = A cos t + B sin ¢. Substitution into the ODE results

in A=1and B = 0. Thus the general solution is y(t) = ¢1 + cae’ + cze™* + cos t.

6. The characteristic equation corresponding to the homogeneous problem can
be written as (r?+1)2 =0. It follows that y. = 1 cos t + casin t + t(cz cos t +
cgsin t). Since g(t) is not a solution of the homogeneous problem, set Y (t) =
A+ Becos 2t + C'sin 2¢t. Substitution into the ODE results in A =3, B =1/9,
C = 0. Thus the general solution is y(t) = y.(t) + 3 + cos 2t /9.

7. The characteristic equation corresponding to the homogeneous problem can be
written as r3(r® + 1) = 0. Thus the homogeneous solution is

Yo =1+ ot + cst® + cae™t 4 €/? | e5cos(V3B 1/2) 4 ¢ sin(ﬁt/Q)} .

Note the g(t) =t is a solution of the homogenous problem. Consider a particular
solution of the form Y (t) = t3(At + B). Substitution into the ODE gives us that
A =1/24 and B = 0. Thus the general solution is y(t) = y.(t) +t*/24.

8. The characteristic equation corresponding to the homogeneous problem can
be written as r3(r + 1) = 0. Hence the homogeneous solution is y. = ¢; + cat +
c3t? 4+ cuet. Since g(t) is not a solution of the homogeneous problem, set Y (¢) =
Acos 2t + Bsin 2¢. Substitution into the ODE results in A = 1/40 and B = 1/20.
Thus the general solution is y(t) = y.(t) + (cos 2t + 2sin 2t)/40.

10. From Problem 22 in Section 4.2, the homogeneous solution is y. = ¢j cos t +
casint +t[cgcos t+ cysin t]. Since g(t) is not a solution of the homogeneous
problem, substitute Y (¢) = At + B into the ODE to obtain A = 3 and B = 4. Thus
the general solution is y(t) = y.(t) + 3t + 4. Invoking the initial conditions, we find
that ¢y = —4, co = —4, c3 =1, ¢4 = —3/2. Therefore the solution of the initial
value problem is y(t) = (t —4)cos t — (3t/2 +4)sin t + 3t + 4.
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11. The characteristic equation can be written as r(r? — 3r + 2) = 0. Hence the
homogeneous solution is y. = ¢1 + cae! + cze?. Let g1(t) = €' and go(t) = t. Note
that g; is a solution of the homogeneous problem. Set Y;(t) = Atet. Substitution
into the ODE results in A = —1. Now let Y3(t) = Bt? + Ct. Substitution into the
ODE results in B=1/4 and C =3/4. Therefore the general solution is y(t) =
c1 + coelt + c3e®t — tet + (t2 + 3t) /4. Invoking the initial conditions, we find that
c1 =1, cg =c3=0. The solution of the initial value problem is y(t) = 1 — te* +
(> +3t)/4.

T T 1
0.5 1 1.5

12. The characteristic equation can be written as (r — 1)(r + 3)(r? + 4) = 0. Hence
the homogeneous solution is y. = cie? + cae ™3t + c3 cos 2t 4 ¢4 sin 2t. None of the
terms in g(¢) is a solution of the homogeneous problem. Therefore we can assume a
form Y (t) = Ae™ " + Bcos t + C'sin t. Substitution into the ODE results in the val-
ues A=1/20, B=-2/5, C = —4/5. Hence the general solution is y(t) = cie’ +
c2e™3t + c3co8 2t + ¢y sin 2t + €71 /20 — (2cos t + 4sin t)/5.  Invoking the initial
conditions, we find that ¢; = 81/40, co = 73/520, c¢5 = 77/65, c4 = —49/130.
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3.89
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14. From Problem 4, the homogeneous solution is 3. = ¢1 + cae! + c3e™t. Consider
the terms gy (t) = te~* and go(t) = 2cos t. Note that since r = —1 is a simple root
of the characteristic equation, we set Y;(t) = (At + B)e~t. The function 2cos ¢
is not a solution of the homogeneous equation. We set Ya(t) = C'cos ¢t + Dsin t.
Hence the particular solution has the form Y (t) = t(At + B)e™" + C cos t + Dsin t.

15. The characteristic equation can be written as (r? —1)2 = 0. The roots are
given as 7 = + 1, each with multiplicity two. Hence the solution of the homogeneous
problem is y. = cie + cotel + cze™t + cqte™t. Let g1 (t) = €! and go(t) = sin £. The
function e’ is a solution of the homogeneous problem. Since r = 1 has multiplicity
two, we set Y;(t) = At?e’. The function sin ¢ is not a solution of the homogeneous
equation. We can set Y3(t) = Bcos t 4+ C'sin t. Hence the particular solution has
the form Y (t) = At?e! + Bcos t + C'sin t.

16. The characteristic equation can be written as 72(r? 4 4) = 0, and the roots are
r =0, £2¢. The root r = 0 has multiplicity two, hence the homogeneous solution
is Yo = €1 + cat + c3co8 2t + ¢4 sin 2¢. The functions ¢;(¢) = sin 2¢ and go(t) = 4
are solutions of the homogenous equation. The complex roots have multiplicity
one, therefore we need to set Yi(t) = At cos 2t + Bt sin 2t. Now go(t) =4 is as-
sociated with the double root 7 =0, so we set Ya(t) = Ct?. Finally, g3(t) = te'
(and its derivatives) is independent of the homogeneous solution. Therefore set
Y3(t) = (Dt + E)et. Conclude that the particular solution has the form Y (t) =
At cos 2t + Bt sin 2t + Ct? + (Dt + E)et.

18. The characteristic equation can be written as r%(r? + 2r + 2) = 0, with roots
r =0, with multiplicity two, and r = —1 £ ¢. This means that the homoge-
neous solution is y. = c1 + cot +cze "t cos t +cge tsin t. The function g1(t) =
3et 4+ 2te~t, and all of its derivatives, is independent of the homogeneous solu-
tion. Therefore set Y;(t) = Ae' + (Bt + C)e™t. Now go(t) = e 'sin ¢t is a solution
of the homogeneous equation, associated with the complex roots. We need to set
Ya(t) =t(De tcos t+ Eetsin t). It follows that the particular solution has the
form Y (t) = Ae' + (Bt + C)e ' +t(De tcos t + Ee 'sin t).
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19. Differentiating y = u(t)v(t), successively, we have
y' =u'v+uv’

y// — UN'U"‘QUI’UI"_'L“)”

=3 <”> L= 0)
i=o M

Setting v(t) = e, v\9) = adet. So for any p=1,2,...,n,

P
FOEESS (1?) o =),

=0
It follows that

n

p
L [e%t] = et Z nyp Z (?)aa‘ MCES)) ().
» i=0 M

=0
It is evident that the right hand side of Eq. (%) is of the form
et [kzo ™ 4 k™Y bk, u +ky, u} .

Hence the operator equation L [e®u] = e (bg t™ + by t™ 1 + ... + b1t + by, ) can
be written as

kou™ + kw4 4 kpoqu 4+ kpu=bot™ + b " 4 4 b1t + by,

The coefficients k;, 2 =0,1,...,n can be determined by collecting the like terms
in the double summation in Eq. (). For example, ko is the coefficient of (™).
The only term that contains «(™) is when p=n and j = 0. Hence kg =ay. On
the other hand, k,, is the coefficient of w(t). The inner summation in (%) contains
terms with u, given by a”u (when j = p), for each p =0,1,...,n. Hence

n
k, = E Gpepal.
p=0

21.(a) Clearly, €% is a solution of y’ —2y =0, and te~* is a solution of the dif-

ferential equation y” + 2y’ +y = 0. The latter ODE has characteristic equation
(r4+1)>=0. Hence (D —2)[3¢*] =3(D—2)[e*] =0 and (D+1)*[te”"] = 0.
Furthermore, we have (D —2)(D + 1)?[te™!] = (D —2)[0] =0, and (D — 2)(D +
1)2 [3e*] = (D + 1)%(D — 2) [3¢*'] = (D +1)*[0] = 0.

(b) Based on part (a),
(D—=2)(D+1)*[(D=2*D+1)Y] =(D-2)(D+1)*[3¢* —te”"] =0,

since the operators are linear. The implied operations are associative and commuta-
tive. Hence (D — 2)*(D + 1)3Y = 0. The operator equation corresponds to the so-
lution of a linear homogeneous ODE with characteristic equation (r — 2)4(r +1)3 =
0. The roots are r = 2, with multiplicity 4 and r = —1, with multiplicity 3. It
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follows that the given homogeneous solution is Y (t) = c1e?! + cote?t + cat?e?t +
cat3e® + cse™t + cgte™t + crt?et, which is a linear combination of seven indepen-
dent solutions.

22. (15) Observe that (D — 1) [e!] = 0 and (D? + 1) [sin ¢] = 0. Hence the operator
H(D) = (D —1)(D? + 1) is an annihilator of e’ +sin ¢. The operator correspond-
ing to the left hand side of the given ODE is (D? — 1)2. It follows that

(D+1)%D-1)3D?*+1)Y =0.

The resulting ODE is homogeneous, with solution Y () = c1e™" + cate™" + czel +
catel + cst?el + cgcos t + crsin t.  After examining the homogeneous solution of
Problem 15, and eliminating duplicate terms, we have Y (t) = cst?e? + cg cos t +
Cr sin .

22. (16) We find that D[4] =0, (D — 1)?[te!] = 0, and (D? + 4) [sin 2¢] = 0. The
operator H(D) = D(D — 1)?(D? + 4)is an annihilator of 4 + te! + sin 2t. The op-
erator corresponding to the left hand side of the ODE is D?(D? +4). It follows
that

D*(D —1)*(D* +4)*Y =0.

The resulting ODE is homogeneous, with solution Y'(t) = ¢; + cot + c3t? + cqel +
cstel + cg cos 2t + cysin 2t 4 cgt cos 2t + cot sin 2t.  After examining the homoge-
neous solution of Problem 16, and eliminating duplicate terms, we have Y (t) =
cst? + cqet + cstet + cst cos 2t + cot sin 2t.

22. (18) Observe that (D —1)[e!] =0, (D +1)?[te”!] = 0. The function e !sin ¢
is a solution of a second order ODE with characteristic roots r = —1 4 7. It follows
that (D? 4+ 2D + 2) [e~!sin t] = 0. Therefore the operator

H(D)=(D-1)(D+1)*D*+2D +2)
is an annihilator of 3e! 4 2te™t + e~ !sin t. The operator corresponding to the left
hand side of the given ODE is D?(D? + 2D + 2). It follows that
D*(D —1)(D+1)*(D*+2D +2)*Y =0.

The resulting ODE is homogeneous, with solution Y (t) = ¢ + cat + czet + cqe™ +
cste™t 4+ e7t(cg cos t + cysin t) + te"t(cg cos t + cosin t). After examining the ho-
mogeneous solution of Problem 18 | and eliminating duplicate terms, we have Y (t) =
czet + cqet + este™t +te (cgcos t + cosin t).

2. The characteristic equation is r(r? — 1) = 0. Hence the homogeneous solution is
ye(t) = c1 + cae’ + cze™t. The Wronskian is evaluated as W (1,ef,e™*) =2. Now
compute the three determinants
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t

1 0
Wg(t) =0 et 0| = et.
0 1

et

The solution of the system of equations (10) is

i) = i ==t gl = 2 —reepn
w(t) = tpVVVZ’S) )

Hence uy(t) = —t2/2, us(t) = —e7t(t +1)/2, uz(t) = e'(t — 1)/2. The particular
solution becomes Y (t) = —t2/2 — (t +1)/2 + (t —1)/2 = —t?/2 — 1. The constant
is a solution of the homogeneous equation, therefore the general solution is

y(t) = c1 + coe’ +cze”t — /2.

3. From Problem 13 in Section 4.2, y.(t) = cie™ + cae? + c3e?'. The Wronskian is
evaluated as W(e™!, et, e?!) = 6 e2t. Now compute the three determinants

0 et €2 et 0 e
Wi(t) =10 et 2e%| =€, Wy(t)=|-et 0 2e%| = -3¢,
1 et 4e?t et 1 4e*

et et 0
Ws(t) = |—et e 0] =2
et e 1

Hence u{(t) = €% /6, uj(t) = —e3t/2, uj(t) = €*'/3. Therefore the particular so-
lution can be expressed as Y (t) = e* [¢%"/30] — e [e3 /6] + 2! [¢*' /6] = %' /30.

6. From Problem 22 in Section 4.2, y.(t) = ¢y cos t + casin t + ¢ [c5 cos t + ¢4 sin t].
The Wronskian is evaluated as W (cos t,sin ¢,t cos t,t sin t) = 4. Now compute the
four auxiliary determinants

0 sint t cost tsint

Wit) = 0 cqst cos.t—tsint sint+tco§t
0 —sint —2sint—tcost 2cost—tsint

1 —cost —3cost+tsint —3sint—tcost

= —2sint + 2t cost,

cos t
—sin t
—cos t

sin ¢

0 t cost

0 cost—tsint
0 —2sint—tcost
1 —3cost+tsint

=2t sin t+ 2cos t,

tsint
sint+1tcost
2cost—1tsint
—3sint—tcost

cos t
—sin t
—cos t

sin t

Ws(t) =

sint O
cost 0
—sint O
—cost 1

tsint
sint+1%cost
2cost—tsint
—3sint—tcost

= —2cos t,
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cos t sin ¢ tcost 0

—sint cost cost—tsint 0 .
Walt) = —cost —sint —2sint—tcost 0| —2sin £.

sint —cost —3cost+tsint 1

It follows that
uj(t) = [—sin®t +tsintcost] /2, uj(t) = [tsin®t +sint,cost] /2,
uj(t) = —sin t cos t/2, and uj(t) = —sin®t/2.
Hence
uy(t) = (3sintcost — 2t cos®t —t)/8, ug(t) = (sin®t — 2cos®t — 2tsint cost + t2)/8,
us(t) = —sin®t/4, and  u4(t) = [cos t sin t — t] /4.

Therefore the particular solution can be expressed as Y (t) = wuy(t) cost + ua(t) sint +
us(t)tcost + uy(t)tsint = (sint — 3tcost — t?sint)/8. Note that only the last term
is not a solution of the homogeneous equation. Hence the general solution is
y(t) = c1cos t + casin t +t[c3cos t + cysin t] — 2 sin ¢ /8.

8. Based on the results in Problem 2, y.(t) = ¢1 + coel + cset. Tt was also shown
that W(1,ef,et) =2, with Wi(t) = =2, Wa(t) = e, W5(t) = e'. Therefore we
have u{(t) = —csc t, uj(t) =e ‘tcsct /2, uj(t) = et csc t /2. The particular solu-
tion can be expressed as Y (t) = [u1(¢)] + e [ua(t)] + €' [us(t)]. More specifically,

t ot —t gt
Y (t) = In|esc(t) 4 cot(t)]| + % / e~ % csc(s)ds + 67 e’ csc(s)ds
to t()

= In |esc(t) 4 cot(t)] + / cosh(t — s) csc(s)ds.

to

9. Based on Problem 4, u{(t) =sec t, us(t) = —1, ui(t) = —tan t. The particu-
lar solution can be expressed as Y (t) = [u1(t)] + cos t [uz(t)] + sin ¢ [us(t)]. That
is, Y(t) = In|sec(t) + tan(t)| — ¢ cos ¢ + sin ¢ In|cos(t)|. Hence the general solution
of the initial value problem is y(t) = ¢; + ¢y cos t + ¢z sin ¢ + In [sec(t) 4 tan(t)| —
t cos t + sin t In|cos(t)|. Invoking the initial conditions, we require that ¢; + ¢ =
2,¢c3 =1, —co = —2. Therefore y(t) = 2cost + sint + In[sec(t) + tan(t)| — tcost +
sintln |cos(t)|. Since —m/2 < t < w/2, the absolute value signs may be removed.

224
2.1 4
2.0

1.9 4

1.7 4

1.6 4

1.4 4

1.3 4
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10. From Problem 6, y(t) = c; cost + casint + czt cost + cutsint — t? sint/8. In or-
der to satisfy the initial conditions, we require that ¢c; =2, co +¢3 =0, —c1 + 2¢4 =
—1,-3/4 — c3 — 3c3 = 1. Therefore y(t) = (Tsint — Ttcost + 4tsint — t2sint) /8 +
2 cost.

12. From Problem 8, the general solution of the initial value problem is
y(t) = c1 + cae’ + cze”t + Inesc(t) + cot(t)| +

et [ et [!
+— [ e Fese(s)ds+ — [ e®cse(s)ds.
2 Ji 2 Ji

In this case, tg = 7/2. Observe that y(7/2) = y.(7/2), y'(7/2) = yl(7/2), and
y”(n/2) =yl (w/2). Therefore we obtain the system of equations

c1 + coe™? 4 e/ = 2,

coe™? — 0367“/2 =1,

/2

c2e™? 4 c3e” /% = 1.

Hence the solution of the initial value problem is

t

y(t) = 3 — e ™2 £ In[esc(t) + cot(t)| + / cosh(t — s) csc(s)ds.
w/2
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13. First write the equation as y"’ +x~'y” — 2272y’ 4+ 223y = 22. The Wron-
skian is evaluated as W (x, 22, 1/2) = 6/2. Now compute the three determinants

0 22 1/x x 0 1/z
Wi(z) =0 2z —1/2%|=-3, Wa(x)=|1 0 —1/2? =2/x,
1 2 2/48 0 1 2/3
r 22 0
Ws(z)=1{1 2z 0|=2?
0 2 1
Hence uj(z) = —2?, uj(z) = 22/3, uj(xr) = 2*/3. Therefore the particular solu-

tion can be expressed as

Y(z) =z [-2°/3] + 2® [2°/3] —|—% [2°/15] = 2% /15.

15. The homogeneous solution is y.(t) = ¢1 cos t + cosin t + c3 cosh ¢ + ¢4 sinh ¢.
The Wronskian is evaluated as W (cos t,sin t, cosh ¢,sinh t) = 4. Now the four
additional determinants are given by Wi(t) = 2 sin t, Wa(t) = —2 cos ¢, Ws(t) =
—2 sinh ¢, Wy(t) = 2 cosh ¢. If follows that

ui(t) =g(t) sin(t)/2,  ug(t) = —g(t) cos(t)/2,
uj(t) = —g(t) sinh(t)/2, uy(t) = g(t) cosh(t)/2.

Therefore the particular solution can be expressed as

Y(t) = M/ g(s) sin(s)ds — M/ g(s) cos(s) ds—

2 to 2 to
h(t) [* inh(t) [*

_ cosh(t) / g(s) sinh(s)ds + sinh(t) / g(s) cosh(s)ds.
2/ 2/,

Using the appropriate identities, the integrals can be combined to obtain

Y(t)= f/ g(s) sinh(t — s) ds — %/ g(s) sin(t — s)ds.

2 to to

17. First write the equation as y”' — 32~ ly” + 627 2%y’ — 62 3y =g(x) /2>. Tt
can be shown that y.(z) = c1x + co 22 + c3 x> is a solution of the homogeneous
equation. The Wronskian of this fundamental set of solutions is W (x,z?% 2?) =
223, The three additional determinants are given by Wi (x) = x%, Wa(x) = —223,
Ws(x) = 2. Hence u(z) = g(z)/22%, us(z) = —g(z) /23, uj(z) = g(z)/22*. Now
the particular solution can be expressed as

“g(t) “g(t) “g(t)

0 0 0

1 x 2 2 3
:5/ {m—m—km}g(t)dt.
zo



