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C H A P T E R

4

Higher Order Linear Equations

4.1

1. The differential equation is in standard form. Its coefficients, as well as the
function g(t) = t , are continuous everywhere. Hence solutions are valid on the
entire real line.

3. Writing the equation in standard form, the coefficients are rational functions
with singularities at t = 0 and t = 1 . Hence the solutions are valid on the intervals
(−∞,0), (0 , 1) , and (1 ,∞) .

5. Writing the equation in standard form, the coefficients are rational functions
with a singularity at x0 = 1 . Furthermore, p4(x) = tan x/(x− 1) is undefined,
and hence not continuous, at xk = ±(2k + 1)π/2 , k = 0, 1, 2, . . . . Hence solutions
are defined on any interval that does not contain x0 or xk .

6. Writing the equation in standard form, the coefficients are rational functions with
singularities at x = ± 2 . Hence the solutions are valid on the intervals (−∞,− 2),
(−2 , 2) , and (2 ,∞) .

7. Evaluating the Wronskian of the three functions, W (f1, f2, f3) = −14 . Hence
the functions are linearly independent.

9. Evaluating the Wronskian of the four functions, W (f1, f2, f3, f4) = 0 . Hence
the functions are linearly dependent. To find a linear relation among the functions,
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we need to find constants c1, c2, c3, c4 , not all zero, such that

c1f1(t) + c2f2(t) + c3f3(t) + c4f4(t) = 0 .

Collecting the common terms, we obtain

(c2 + 2c3 + c4)t2 + (2c1 − c3 + c4)t+ (−3c1 + c2 + c4) = 0 ,

which results in three equations in four unknowns. Arbitrarily setting c4 = −1 ,
we can solve the equations c2 + 2c3 = 1 , 2c1 − c3 = 1 , −3c1 + c2 = 1 , to find that
c1 = 2/7, c2 = 13/7, c3 = −3/7 . Hence

2f1(t) + 13f2(t)− 3f3(t)− 7f4(t) = 0 .

10. Evaluating the Wronskian of the three functions, W (f1, f2, f3) = 156 . Hence
the functions are linearly independent.

11. Substitution verifies that the functions are solutions of the differential equation.
Furthermore, we have W (1, cos t, sin t) = 1 .

12. Substitution verifies that the functions are solutions of the differential equation.
Furthermore, we have W (1, t, cos t, sin t) = 1 .

14. Substitution verifies that the functions are solutions of the differential equation.
Furthermore, we have W (1, t, e−t, t e−t) = e−2t.

15. Substitution verifies that the functions are solutions of the differential equation.
Furthermore, we have W (1, x, x3) = 6x .

16. Substitution verifies that the functions are solutions of the differential equation.
Furthermore, we have W (x, x2, 1/x) = 6/x .

18. The operation of taking a derivative is linear, and hence (c1y1 + c2y2)(k) =

c1y
(k)
1 + c2y

(k)
2 . It follows that

L [c1y1 + c2y2] = c1y
(n)
1 + c2y

(n)
2 + p1(c1y

(n−1)
1 + c2y

(n−1)
2 ) + . . .+ pn(c1y1 + c2y2).

Rearranging the terms, we obtain L [c1y1 + c2y2] = c1L [y1] + c2L [y2]. Since y1 and
y2 are solutions, L [c1y1 + c2y2] = 0 . The rest follows by induction.

20.(a) Let f(t) and g(t) be arbitrary functions. Then W (f, g) = fg ′ − f ′g . Hence
W ′(f, g) = f ′g ′ + fg ′′ − f ′′g − f ′g ′ = fg ′′ − f ′′g . That is,

W ′(f, g) =

∣∣∣∣ f g
f ′′ g ′′

∣∣∣∣ .
Now expand the 3-by-3 determinant as

W (y1, y2, y3) = y1

∣∣∣∣y ′2 y ′3
y ′′2 y ′′3

∣∣∣∣− y2

∣∣∣∣y ′1 y ′3
y ′′1 y ′′3

∣∣∣∣+ y3

∣∣∣∣y ′1 y ′2
y ′′1 y ′′2

∣∣∣∣ .
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Differentiating, we obtain

W ′(y1, y2, y3) = y ′1

∣∣∣∣y ′2 y ′3
y ′′2 y ′′3

∣∣∣∣− y ′2 ∣∣∣∣y ′1 y ′3
y ′′1 y ′′3

∣∣∣∣+ y ′3

∣∣∣∣y ′1 y ′2
y ′′1 y ′′2

∣∣∣∣+
+ y1

∣∣∣∣ y ′2 y ′3
y ′′′2 y ′′′3

∣∣∣∣− y2

∣∣∣∣ y ′1 y ′3
y ′′′1 y ′′′3

∣∣∣∣+ y3

∣∣∣∣ y ′1 y ′2
y ′′′1 y ′′′2

∣∣∣∣ .
The second line follows from the observation above. Now we find that

W ′(y1, y2, y3) =

∣∣∣∣∣∣
y ′1 y ′2 y ′3
y ′1 y ′2 y ′3
y ′′1 y ′′2 y ′′3

∣∣∣∣∣∣+

∣∣∣∣∣∣
y1 y2 y3

y ′1 y ′2 y ′3
y ′′′1 y ′′′2 y ′′′3

∣∣∣∣∣∣ .
Hence the assertion is true, since the first determinant is equal to zero.

(b) Based on the properties of determinants,

p2(t)p3(t)W ′ =

∣∣∣∣∣∣
p3 y1 p3 y2 p3 y3

p2 y
′
1 p2 y

′
2 p2 y

′
3

y ′′′1 y ′′′2 y ′′′3

∣∣∣∣∣∣ .
Adding the first two rows to the third row does not change the value of the deter-
minant. Since the functions are assumed to be solutions of the given ODE, addition
of the rows results in

p2(t)p3(t)W ′ =

∣∣∣∣∣∣
p3 y1 p3 y2 p3 y3

p2 y
′
1 p2 y

′
2 p2 y

′
3

−p1 y
′′
1 −p1 y

′′
2 −p1 y

′′
3

∣∣∣∣∣∣ .
It follows that p2(t)p3(t)W ′ = −p1(t)p2(t)p3(t)W . As long as the coefficients are
not zero, we obtain W ′ = −p1(t)W .

(c) The first order equation W ′ = −p1(t)W is linear, with integrating factor µ(t) =
e
∫
p1(t)dt . Hence W (t) = c e−

∫
p1(t)dt . Furthermore, W (t) is zero only if c = 0 .

(d) It can be shown, by mathematical induction, that

W ′(y1, y2, . . . , yn) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 . . . yn−1 yn
y ′1 y ′2 . . . y ′n−1 y ′n
...

...

y
(n−2)
1 y

(n−2)
2 . . . y

(n−2)
n−1 y

(n−2)
n

y
(n)
1 y

(n)
2 . . . y

(n)
n−1 y

(n)
n

∣∣∣∣∣∣∣∣∣∣∣
.

Based on the reasoning in part (b), it follows that

p2(t)p3(t) . . . pn(t)W ′ = −p1(t)p2(t)p3(t) . . . pn(t)W ,

and hence W ′ = −p1(t)W .

21. Inspection of the coefficients reveals that p1(t) = 2. Based on Problem 20, we
find that W ′ = −2W , and hence W = ce−2t.
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22. Inspection of the coefficients reveals that p1(t) = 0. Based on Problem 20, we
find that W ′ = 0, and hence W = c.

24. Writing the equation in standard form, we find that p1(t) = 1/t. Using Abel’s
formula, the Wronskian has the form W (t) = c e−

∫
1/t dt = ce− ln t = c/t .

26. Let y(t) = y1(t)v(t). Then y ′ = y ′1v + y1v
′, y ′′ = y ′′1 v + 2y ′1v

′ + y1v
′′, and

y ′′′ = y ′′′1 v + 3y ′′1 v
′ + 3y ′1v

′′ + y1v
′′′. Substitution into the ODE results in

y ′′′1 v + 3y ′′1 v
′ + 3y ′1v

′′ + y1v
′′′ + p1 [y ′′1 v + 2y ′1v

′ + y1v
′′] +

+p2 [y ′1v + y1v
′] + p3y1v = 0.

Since y1 is assumed to be a solution, all terms containing the factor v(t) vanish.
Hence

y1v
′′′ + [p1y1 + 3y ′1] v ′′ + [3y ′′1 + 2p1y

′
1 + p2y1] v ′ = 0 ,

which is a second order ODE in the variable u = v ′.

28. First write the equation in standard form:

y ′′′ − 3
t+ 2

t(t+ 3)
y ′′ + 6

t+ 1

t2(t+ 3)
y ′ − 6

t2(t+ 3)
y = 0 .

Let y(t) = t2v(t). Substitution into the given ODE results in

t2v ′′′ + 3
t(t+ 4)

t+ 3
v ′′ = 0 .

Set w = v ′′. Then w is a solution of the first order differential equation

w ′ + 3
t+ 4

t(t+ 3)
w = 0 .

This equation is linear, with integrating factor µ(t) = t4/(t+ 3). The general so-
lution is w = c(t+ 3)/t4. Integrating twice, v(t) = c1t

−1 + c1t
−2 + c2t+ c3. Hence

y(t) = c1t+ c1 + c2t
3 + c3t

2. Finally, since y1(t) = t2 and y2(t) = t3 are given so-
lutions, the third independent solution is y3(t) = c1t+ c1.

4.2

1. The magnitude of 1 + i is R =
√

2 and the polar angle is π/4 . Hence the polar
form is given by 1 + i =

√
2 eiπ/4.

3. The magnitude of −3 is R = 3 and the polar angle is π . Hence −3 = 3 eiπ.

4. The magnitude of −i is R = 1 and the polar angle is 3π/2 . Hence −i = e3πi/2.

5. The magnitude of
√

3 − i is R = 2 and the polar angle is −π/6 = 11π/6 . Hence
the polar form is given by

√
3 − i = 2 e11πi/6.
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6. The magnitude of −1− i is R =
√

2 and the polar angle is 5π/4 . Hence the
polar form is given by −1− i =

√
2 e5πi/4.

7. Writing the complex number in polar form, 1 = e2mπi, where m may be any
integer. Thus 11/3 = e2mπi/3. Setting m = 0, 1, 2 successively, we obtain the three
roots as 11/3 = 1 , 11/3 = e2πi/3, 11/3 = e4πi/3. Equivalently, the roots can also be
written as 1 , cos(2π/3) + i sin(2π/3) = (−1 + i

√
3 )/2, cos(4π/3) + i sin(4π/3) =

(−1− i
√

3 )/2.

9. Writing the complex number in polar form, 1 = e2mπi, where m may be any
integer. Thus 11/4 = e2mπi/4. Setting m = 0, 1, 2, 3 successively, we obtain the
three roots as 11/4 = 1 , 11/4 = eπi/2, 11/4 = eπi, 11/4 = e3πi/2. Equivalently, the
roots can also be written as 1 , cos(π/2) + i sin(π/2) = i, cos(π) + i sin(π) = −1 ,
cos(3π/2) + i sin(3π/2) = −i.

10. In polar form, 2(cos π/3 + i sin π/3) = 2 ei(π/3+2mπ), in which m is any integer.

Thus [2(cos π/3 + i sin π/3)]
1/2

= 21/2 ei(π/6+mπ). With m = 0 , one square root
is given by 21/2 eiπ/6 = (

√
3 + i)/

√
2 . With m = 1 , the other root is given by

21/2 ei7π/6 = (−
√

3 − i)/
√

2 .

11. The characteristic equation is r3 − r2 − r + 1 = 0. The roots are r = −1, 1, 1 .
One root is repeated, hence the general solution is y = c1e

−t + c2e
t + c3te

t.

13. The characteristic equation is r3 − 2r2 − r + 2 = 0 , with roots r = −1, 1, 2 .
The roots are real and distinct, so the general solution is y = c1e

−t + c2e
t + c3e

2t.

14. The characteristic equation can be written as r2(r2 − 4r + 4) = 0 . The roots
are r = 0, 0, 2, 2 . There are two repeated roots, and hence the general solution is
given by y = c1 + c2t+ c3e

2t + c4te
2t.

16. The characteristic equation can be written as (r2 − 1)(r2 − 4) = 0 . The roots
are given by r = ± 1,± 2 . The roots are real and distinct, hence the general solution
is y = c1e

−t + c2e
t + c3e

−2t + c4e
2t.

17. The characteristic equation can be written as (r2 − 1)3 = 0 . The roots are
given by r = ± 1 , each with multiplicity three. Hence the general solution is
y = c1e

−t + c2te
−t + c3t

2e−t + c4e
t + c5te

t + c6t
2et.

18. The characteristic equation can be written as r2(r4 − 1) = 0 . The roots are
given by r = 0, 0,± 1,± i . The general solution is y = c1 + c2t+ c3e

−t + c4e
t +

c5 cos t+ c6 sin t .

19. The characteristic equation can be written as r(r4 − 3r3 + 3r2 − 3r + 2) =
0 . Examining the coefficients, it follows that r4 − 3r3 + 3r2 − 3r + 2 = (r − 1)(r −
2)(r2 + 1). Hence the roots are r = 0, 1, 2,± i . The general solution of the ODE is
given by y = c1 + c2e

t + c3e
2t + c4 cos t+ c5 sin t .

20. The characteristic equation can be written as r(r3 − 8) = 0, with roots r = 0,
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2 e2mπi/3, m = 0, 1, 2 . That is, r = 0, 2,−1 ± i
√

3 . Hence the general solution is
y = c1 + c2e

2t + e−t
[
c3 cos

√
3 t+ c4 sin

√
3 t
]
.

21. The characteristic equation can be written as (r4 + 4)2 = 0 . The roots of the
equation r4 + 4 = 0 are r = 1 ± i , −1 ± i . Each of these roots has multiplicity
two. The general solution is y = et [c1 cos t+ c2 sin t ] + tet [c3 cos t+ c4 sin t ] +
e−t [c5 cos t+ c6 sin t ] + te−t [c7 cos t+ c8 sin t ].

22. The characteristic equation can be written as (r2 + 1)2 = 0 . The roots are
given by r = ± i , each with multiplicity two. The general solution is y = c1 cos t+
c2 sin t+ t [c3 cos t+ c4 sin t ].

24. The characteristic equation is r3 + 5r2 + 6r + 2 = 0. Examining the coeffi-
cients, we find that r3 + 5r2 + 6r + 2 = (r + 1)(r2 + 4r + 2). Hence the roots are

deduced as r = −1 , −2 ±
√

2 . The general solution is y = c1e
−t + c2e

(−2+
√

2)t +

c3e
(−2−

√
2)t.

25. The characteristic equation is 18r3 + 21r2 + 14r + 4 = 0. By examining the
first and last coefficients, we find that 18r3 + 21r2 + 14r + 4 = (2r + 1)(9r2 + 6r +
4). Hence the roots are r = −1/2 , (−1±

√
3 i)/3 . The general solution of the ODE

is given by y = c1e
−t/2 + e−t/3

[
c2 cos(t/

√
3 ) + c3 sin(t/

√
3 )
]
.

26. The characteristic equation is r4 − 7r3 + 6r2 + 30r − 36 = 0. By examining
the first and last coefficients, we find that r4 − 7r3 + 6r2 + 30r − 36 = (r − 3)(r +
2)(r2 − 6r + 6). The roots are r = −2, 3, 3 ±

√
3 . The general solution is y =

c1e
−2t + c2e

3t + c3e
(3−
√

3)t + c4e
(3+
√

3)t.

28. The characteristic equation is r4 + 6r3 + 17r2 + 22r + 14 = 0. It can be shown
that r4 + 6r3 + 17r2 + 22r + 14 = (r2 + 2r + 2)(r2 + 4r + 7). Hence the roots are
r = −1 ± i , −2 ± i

√
3 . The general solution of the euqation is y = e−t(c1 cos t+

c2 sin t) + e−2t(c3 cos
√

3 t+ c4 sin
√

3 t).

32. The characteristic equation is r3 − r2 + r − 1 = 0 , with roots r = 1 , ± i .
Hence the general solution is y(t) = c1e

t + c2 cos t+ c3 sin t . Invoking the initial
conditions, we obtain the system of equations c1 + c2 = 2, c1 + c3 = −1, c1 − c2 =
−2, with solution c1 = 0 , c2 = 2 , c3 = −1 . Therefore the solution of the initial
value problem is y(t) = 2 cos t− sin t , which oscillates as t→∞.
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33. The characteristic equation is 2r4 − r3 − 9r2 + 4r + 4 = 0 , with roots r =
−1/2 , 1 , ± 2 . Hence the general solution is y(t) = c1e

−t/2 + c2e
t + c3e

−2t + c4e
2t .

Applying the initial conditions, we obtain the system of equations c1 + c2 + c3 +
c4 = −2, −c1/2 + c2 − 2c3 + 2c4 = 0, c1/4 + c2 + 4c3 + 4c4 = −2, −c1/8 + c2 − 8c3 +
8c4 = 0, with solution c1 = −16/15 , c2 = −2/3 , c3 = −1/6 , c4 = −1/10 . There-
fore the solution of the initial value problem is y(t) = −(16/15)e−t/2 − (2/3)et −
e−2t/6− e2t/10. The solution decreases without bound.

35. The characteristic equation is 6 r3 + 5r2 + r = 0 , with roots r = 0 ,−1/3 ,−1/2 .
The general solution is y(t) = c1 + c2e

−t/3 + c3e
−t/2. Invoking the initial condi-

tions, we require that c1 + c2 + c3 = −2, −c2/3− c3/2 = 2, c2/9 + c3/4 = 0. The
solution is c1 = 8 , c2 = −18 , c3 = 8. Therefore the solution of the initial value
problem is y(t) = 8− 18e−t/3 + 8e−t/2. It approaches 8 as t→∞.
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36. The general solution is derived in Problem 28 as

y(t) = e−t [c1 cos t+ c2 sin t ] + e−2t
[
c3 cos

√
3 t+ c4 sin

√
3 t
]
.

Invoking the initial conditions, we obtain the system of equations

c1 + c3 = 1

−c1 + c2 − 2c3 +
√

3 c4 = −2

−2c2 + c3 − 4
√

3 c4 = 0

2c1 + 2c2 + 10c3 + 9
√

3 c4 = 3

with solution c1 = 21/13 , c2 = −38/13 , c3 = −8/13 , c4 = 17
√

3 /39 .

The solution is a rapidly decaying oscillation.

40.(a) Suppose that c1e
r1t + c2e

r2t + . . .+ cne
rnt = 0 , and each of the rk are real

and different. Multiplying this equation by e−r1t, we obtain that c1 + c2e
(r2−r1)t +

. . .+ cne
(rn−r1)t = 0 . Differentiation results in

c2(r2 − r1)e(r2−r1)t + . . .+ cn(rn − r1)e(rn−r1)t = 0 .

(b) Now multiplying the latter equation by e−(r2−r1)t, and differentiating, we obtain

c3(r3 − r2)(r3 − r1)e(r3−r2)t + . . .+ cn(rn − r2)(rn − r1)e(rn−r2)t = 0 .

(c) Following the above steps in a similar manner, it follows that

cn(rn − rn−1) . . . (rn − r1)e(rn−rn−1)t = 0 .

Since these equations hold for all t, and all the rk are different, we have cn = 0 .
Hence c1e

r1t + c2e
r2t + . . .+ cn−1e

rn−1t = 0 , −∞ < t <∞ .

(d) The same procedure can now be repeated, successively, to show that c1 = c2 =
. . . = cn = 0.
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41.(a) Recall the derivative formula

dn

dxn
(uv) =

(
n
0

)
v
dnu

dxn
+

(
n
1

)
dv

dx

dn−1u

dxn−1
+ . . .+

(
n
n

)
dnv

dxn
u .

Let u = (r − r1)s and v = q(r) . Note that

dn

drn
[(r − r1)s] = s · (s− 1) . . . (s− n+ 1)(r − r1)s−n

and
ds

drs
[(r − r1)s] = s ! .

Therefore
dn

drn
[(r − r1)sq(r)]

∣∣∣
r=r1

= 0

only if n < s , since it is assumed that q(r1) 6= 0 .

(b) Differential operators commute, so that

∂

∂r
(
dk

dtk
ert) =

dk

dtk
(
∂ ert

∂r
) =

dk

dtk
(t ert).

Likewise,
∂j

∂rj
(
dk

dtk
ert) =

dk

dtk
(
∂j ert

∂rj
) =

dk

dtk
(tj ert).

It follows that
∂j

∂rj
L
[
ert
]

= L
[
tj ert

]
.

(c) From Eq. (i), we have

∂j

∂rj
[
ert Z(r)

]
= L

[
tj ert

]
.

Based on the product formula in part (a),

∂j

∂rj
[
ert Z(r)

] ∣∣∣
r=r1

= 0

if j < s . Therefore L
[
tj er1t

]
= 0 if j < s .

4.3

2. The general solution of the homogeneous equation is yc = c1e
t + c2e

−t + c3 cos t+
c4 sin t. Let g1(t) = 3t and g2(t) = cos t. By inspection, we find that Y1(t) =
−3t. Since g2(t) is a solution of the homogeneous equation, set Y2(t) = t(A cos t+
B sin t). Substitution into the given ODE and comparing the coefficients of similar
term results in A = 0 and B = −1/4 . Hence the general solution of the nonhomo-
geneous problem is y(t) = yc(t)− 3t− t sin t /4.
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3. The characteristic equation corresponding to the homogeneous problem can be
written as (r + 1)(r2 + 1) = 0 . The solution of the homogeneous equation is yc =
c1e
−t + c2 cos t+ c3 sin t . Let g1(t) = e−t and g2(t) = 4t. Since g1(t) is a solution

of the homogeneous equation, set Y1(t) = Ate−t. Substitution into the ODE results
in A = 1/2. Now let Y2(t) = Bt+ C. We find that B = −C = 4 . Hence the general
solution of the nonhomogeneous problem is y(t) = yc(t) + te−t/2 + 4(t− 1) .

4. The characteristic equation corresponding to the homogeneous problem can
be written as r(r + 1)(r − 1) = 0 . The solution of the homogeneous equation is
yc = c1 + c2e

t + c3e
−t. Since g(t) = 2 sin t is not a solution of the homogeneous

problem, we can set Y (t) = A cos t +B sin t . Substitution into the ODE results
in A = 1 and B = 0 . Thus the general solution is y(t) = c1 + c2e

t + c3e
−t + cos t .

6. The characteristic equation corresponding to the homogeneous problem can
be written as (r2 + 1)2 = 0 . It follows that yc = c1 cos t+ c2 sin t+ t(c3 cos t+
c4 sin t). Since g(t) is not a solution of the homogeneous problem, set Y (t) =
A+B cos 2t+ C sin 2t . Substitution into the ODE results in A = 3, B = 1/9,
C = 0 . Thus the general solution is y(t) = yc(t) + 3 + cos 2t /9.

7. The characteristic equation corresponding to the homogeneous problem can be
written as r3(r3 + 1) = 0 . Thus the homogeneous solution is

yc = c1 + c2 t+ c3t
2 + c4e

−t + et/2
[
c5 cos(

√
3 t/2) + c5 sin(

√
3 t/2)

]
.

Note the g(t) = t is a solution of the homogenous problem. Consider a particular
solution of the form Y (t) = t3(At+B). Substitution into the ODE gives us that
A = 1/24 and B = 0. Thus the general solution is y(t) = yc(t) + t4/24 .

8. The characteristic equation corresponding to the homogeneous problem can
be written as r3(r + 1) = 0. Hence the homogeneous solution is yc = c1 + c2 t+
c3t

2 + c4e
−t. Since g(t) is not a solution of the homogeneous problem, set Y (t) =

A cos 2t+B sin 2t . Substitution into the ODE results in A = 1/40 and B = 1/20 .
Thus the general solution is y(t) = yc(t) + (cos 2t+ 2 sin 2t)/40 .

10. From Problem 22 in Section 4.2, the homogeneous solution is yc = c1 cos t+
c2 sin t + t [c3 cos t+ c4 sin t ]. Since g(t) is not a solution of the homogeneous
problem, substitute Y (t) = At+B into the ODE to obtain A = 3 and B = 4. Thus
the general solution is y(t) = yc(t) + 3t+ 4. Invoking the initial conditions, we find
that c1 = −4 , c2 = −4 , c3 = 1 , c4 = −3/2 . Therefore the solution of the initial
value problem is y(t) = (t− 4) cos t− (3t/2 + 4) sin t+ 3t+ 4 .
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11. The characteristic equation can be written as r(r2 − 3r + 2) = 0. Hence the
homogeneous solution is yc = c1 + c2e

t + c3e
2t. Let g1(t) = et and g2(t) = t. Note

that g1 is a solution of the homogeneous problem. Set Y1(t) = Atet. Substitution
into the ODE results in A = −1. Now let Y2(t) = Bt2 + Ct. Substitution into the
ODE results in B = 1/4 and C = 3/4 . Therefore the general solution is y(t) =
c1 + c2e

t + c3e
2t − tet + (t2 + 3t)/4. Invoking the initial conditions, we find that

c1 = 1 , c2 = c3 = 0 . The solution of the initial value problem is y(t) = 1− tet +
(t2 + 3t)/4 .

12. The characteristic equation can be written as (r − 1)(r + 3)(r2 + 4) = 0. Hence
the homogeneous solution is yc = c1e

t + c2e
−3t + c3 cos 2t+ c4 sin 2t. None of the

terms in g(t) is a solution of the homogeneous problem. Therefore we can assume a
form Y (t) = Ae−t +B cos t+ C sin t . Substitution into the ODE results in the val-
ues A = 1/20 , B = −2/5 , C = −4/5 . Hence the general solution is y(t) = c1e

t +
c2e
−3t + c3 cos 2t+ c4 sin 2t+ e−t/20− (2 cos t+ 4 sin t)/5. Invoking the initial

conditions, we find that c1 = 81/40 , c2 = 73/520 , c3 = 77/65 , c4 = −49/130 .
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14. From Problem 4, the homogeneous solution is yc = c1 + c2e
t + c3e

−t. Consider
the terms g1(t) = te−t and g2(t) = 2 cos t. Note that since r = −1 is a simple root
of the characteristic equation, we set Y1(t) = t(At+B)e−t. The function 2 cos t
is not a solution of the homogeneous equation. We set Y2(t) = C cos t+D sin t.
Hence the particular solution has the form Y (t) = t(At+B)e−t + C cos t+D sin t.

15. The characteristic equation can be written as (r2 − 1)2 = 0. The roots are
given as r = ± 1, each with multiplicity two. Hence the solution of the homogeneous
problem is yc = c1e

t + c2te
t + c3e

−t + c4te
−t. Let g1(t) = et and g2(t) = sin t. The

function et is a solution of the homogeneous problem. Since r = 1 has multiplicity
two, we set Y1(t) = At2et. The function sin t is not a solution of the homogeneous
equation. We can set Y2(t) = B cos t+ C sin t . Hence the particular solution has
the form Y (t) = At2et +B cos t+ C sin t.

16. The characteristic equation can be written as r2(r2 + 4) = 0, and the roots are
r = 0, ±2i. The root r = 0 has multiplicity two, hence the homogeneous solution
is yc = c1 + c2t+ c3 cos 2t+ c4 sin 2t . The functions g1(t) = sin 2t and g2(t) = 4
are solutions of the homogenous equation. The complex roots have multiplicity
one, therefore we need to set Y1(t) = At cos 2t+Bt sin 2t . Now g2(t) = 4 is as-
sociated with the double root r = 0, so we set Y2(t) = Ct2. Finally, g3(t) = tet

(and its derivatives) is independent of the homogeneous solution. Therefore set
Y3(t) = (Dt+ E)et. Conclude that the particular solution has the form Y (t) =
At cos 2t+Bt sin 2t+ Ct2 + (Dt+ E)et.

18. The characteristic equation can be written as r2(r2 + 2r + 2) = 0 , with roots
r = 0, with multiplicity two, and r = −1 ± i . This means that the homoge-
neous solution is yc = c1 + c2t+ c3e

−t cos t+ c4e
−t sin t . The function g1(t) =

3et + 2te−t, and all of its derivatives, is independent of the homogeneous solu-
tion. Therefore set Y1(t) = Aet + (Bt+ C)e−t. Now g2(t) = e−t sin t is a solution
of the homogeneous equation, associated with the complex roots. We need to set
Y2(t) = t(De−t cos t+ E e−t sin t). It follows that the particular solution has the
form Y (t) = Aet + (Bt+ C)e−t + t(De−t cos t+ E e−t sin t).
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19. Differentiating y = u(t)v(t), successively, we have

y ′ = u ′v + uv ′

y ′′ = u ′′v + 2u ′v ′ + uv ′′

...

y(n) =

n∑
j= 0

(
n

j

)
u(n−j)v(j)

Setting v(t) = eαt, v(j) = αjeαt. So for any p = 1, 2, . . . , n ,

y(p) = eαt
p∑

j= 0

(
p

j

)
αj u(p−j).

It follows that

L
[
eαtu

]
= eαt

n∑
p= 0

an−p p∑
j= 0

(
p

j

)
αj u(p−j)

 (∗).

It is evident that the right hand side of Eq. (∗) is of the form

eαt
[
k0 u

(n) + k1 u
(n−1) + . . .+ kn−1u

′ + kn u
]
.

Hence the operator equation L [eαtu] = eαt(b0 t
m + b1 t

m−1 + . . .+ bm−1t+ bm ) can
be written as

k0 u
(n) + k1 u

(n−1) + . . .+ kn−1u
′ + kn u = b0 t

m + b1 t
m−1 + . . .+ bm−1t+ bm .

The coefficients k i , i = 0, 1, . . . , n can be determined by collecting the like terms
in the double summation in Eq. (∗). For example, k0 is the coefficient of u(n).
The only term that contains u(n) is when p = n and j = 0 . Hence k0 = a0 . On
the other hand, kn is the coefficient of u(t). The inner summation in (∗) contains
terms with u, given by αpu (when j = p), for each p = 0, 1, . . . , n . Hence

kn =

n∑
p= 0

an−p α
p .

21.(a) Clearly, e2t is a solution of y ′ − 2y = 0 , and te−t is a solution of the dif-
ferential equation y ′′ + 2y ′ + y = 0 . The latter ODE has characteristic equation
(r + 1)2 = 0 . Hence (D − 2)

[
3e2t

]
= 3(D − 2)

[
e2t
]

= 0 and (D + 1)2 [te−t] = 0.
Furthermore, we have (D − 2)(D + 1)2 [te−t] = (D − 2) [0] = 0, and (D − 2)(D +
1)2
[
3e2t

]
= (D + 1)2(D − 2)

[
3e2t

]
= (D + 1)2 [0] = 0.

(b) Based on part (a),

(D − 2)(D + 1)2
[
(D − 2)3(D + 1)Y

]
= (D − 2)(D + 1)2

[
3e2t − te−t

]
= 0,

since the operators are linear. The implied operations are associative and commuta-
tive. Hence (D − 2)4(D + 1)3Y = 0. The operator equation corresponds to the so-
lution of a linear homogeneous ODE with characteristic equation (r − 2)4(r + 1)3 =
0 . The roots are r = 2 , with multiplicity 4 and r = −1 , with multiplicity 3 . It
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follows that the given homogeneous solution is Y (t) = c1e
2t + c2te

2t + c3t
2e2t +

c4t
3e2t + c5e

−t + c6te
−t + c7t

2e−t, which is a linear combination of seven indepen-
dent solutions.

22. (15) Observe that (D − 1) [et] = 0 and (D2 + 1) [sin t] = 0 . Hence the operator
H(D) = (D − 1)(D2 + 1) is an annihilator of et + sin t . The operator correspond-
ing to the left hand side of the given ODE is (D2 − 1)2. It follows that

(D + 1)2(D − 1)3(D2 + 1)Y = 0 .

The resulting ODE is homogeneous, with solution Y (t) = c1e
−t + c2te

−t + c3e
t +

c4te
t + c5t

2et + c6 cos t+ c7 sin t. After examining the homogeneous solution of
Problem 15 , and eliminating duplicate terms, we have Y (t) = c5t

2et + c6 cos t+
c7 sin t.

22. (16) We find that D [4] = 0 , (D − 1)2 [tet] = 0 , and (D2 + 4) [sin 2t] = 0 . The
operator H(D) = D(D − 1)2(D2 + 4)is an annihilator of 4 + tet + sin 2t. The op-
erator corresponding to the left hand side of the ODE is D2(D2 + 4). It follows
that

D3(D − 1)2(D2 + 4)2Y = 0 .

The resulting ODE is homogeneous, with solution Y (t) = c1 + c2t+ c3t
2 + c4e

t +
c5te

t + c6 cos 2t+ c7 sin 2t+ c8t cos 2t+ c9t sin 2t. After examining the homoge-
neous solution of Problem 16 , and eliminating duplicate terms, we have Y (t) =
c3t

2 + c4e
t + c5te

t + c8t cos 2t+ c9t sin 2t.

22. (18) Observe that (D − 1) [et] = 0 , (D + 1)2 [te−t] = 0 . The function e−t sin t
is a solution of a second order ODE with characteristic roots r = −1 ± i . It follows
that (D2 + 2D + 2) [e−t sin t] = 0 . Therefore the operator

H(D) = (D − 1)(D + 1)2(D2 + 2D + 2)

is an annihilator of 3et + 2te−t + e−t sin t . The operator corresponding to the left
hand side of the given ODE is D2(D2 + 2D + 2). It follows that

D2(D − 1)(D + 1)2(D2 + 2D + 2)2Y = 0 .

The resulting ODE is homogeneous, with solution Y (t) = c1 + c2t+ c3e
t + c4e

−t +
c5te

−t + e−t(c6 cos t+ c7 sin t) + te−t(c8 cos t+ c9 sin t ). After examining the ho-
mogeneous solution of Problem 18 , and eliminating duplicate terms, we have Y (t) =
c3e

t + c4e
−t + c5te

−t + te−t(c8 cos t+ c9 sin t ).

4.4

2. The characteristic equation is r(r2 − 1) = 0 . Hence the homogeneous solution is
yc(t) = c1 + c2e

t + c3e
−t. The Wronskian is evaluated as W (1, et, e−t) = 2 . Now

compute the three determinants

W1(t) =

∣∣∣∣∣∣
0 et e−t

0 et −e−t
1 et e−t

∣∣∣∣∣∣ = −2, W2(t) =

∣∣∣∣∣∣
1 0 e−t

0 0 −e−t
0 1 e−t

∣∣∣∣∣∣ = e−t,
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W3(t) =

∣∣∣∣∣∣
1 et 0
0 et 0
0 et 1

∣∣∣∣∣∣ = et.

The solution of the system of equations (10) is

u ′1(t) =
tW1(t)

W (t)
= −t, u ′2(t) =

tW2(t)

W (t)
= te−t/2,

u ′3(t) =
tW3(t)

W (t)
= tet/2.

Hence u1(t) = −t2/2 , u2(t) = −e−t(t+ 1)/2 , u3(t) = et(t− 1)/2 . The particular
solution becomes Y (t) = −t2/2− (t+ 1)/2 + (t− 1)/2 = −t2/2− 1 . The constant
is a solution of the homogeneous equation, therefore the general solution is

y(t) = c1 + c2e
t + c3e

−t − t2/2 .

3. From Problem 13 in Section 4.2, yc(t) = c1e
−t + c2e

t + c3e
2t. The Wronskian is

evaluated as W (e−t, et, e2t) = 6 e2t. Now compute the three determinants

W1(t) =

∣∣∣∣∣∣
0 et e2t

0 et 2e2t

1 et 4e2t

∣∣∣∣∣∣ = e3t, W2(t) =

∣∣∣∣∣∣
e−t 0 e2t

−e−t 0 2e2t

e−t 1 4e2t

∣∣∣∣∣∣ = −3et,

W3(t) =

∣∣∣∣∣∣
e−t et 0
−e−t et 0
e−t et 1

∣∣∣∣∣∣ = 2.

Hence u ′1(t) = e5t/6 , u ′2(t) = −e3t/2 , u ′3(t) = e2t/3 . Therefore the particular so-
lution can be expressed as Y (t) = e−t

[
e5t/30

]
− et

[
e3t/6

]
+ e2t

[
e2t/6

]
= e4t/30.

6. From Problem 22 in Section 4.2, yc(t) = c1 cos t+ c2 sin t + t [c3 cos t+ c4 sin t ].
The Wronskian is evaluated as W (cos t, sin t, t cos t, t sin t) = 4 . Now compute the
four auxiliary determinants

W1(t) =

∣∣∣∣∣∣∣∣
0 sin t t cos t t sin t
0 cos t cos t− t sin t sin t+ t cos t
0 − sin t −2 sin t− t cos t 2 cos t− t sin t
1 − cos t −3 cos t+ t sin t −3 sin t− t cos t

∣∣∣∣∣∣∣∣ =

= −2 sin t+ 2t cos t,

W2(t) =

∣∣∣∣∣∣∣∣
cos t 0 t cos t t sin t
− sin t 0 cos t− t sin t sin t+ t cos t
− cos t 0 −2 sin t− t cos t 2 cos t− t sin t
sin t 1 −3 cos t+ t sin t −3 sin t− t cos t

∣∣∣∣∣∣∣∣ =

= 2t sin t+ 2 cos t,

W3(t) =

∣∣∣∣∣∣∣∣
cos t sin t 0 t sin t
− sin t cos t 0 sin t+ t cos t
− cos t − sin t 0 2 cos t− t sin t
sin t − cos t 1 −3 sin t− t cos t

∣∣∣∣∣∣∣∣ = −2 cos t,
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W4(t) =

∣∣∣∣∣∣∣∣
cos t sin t t cos t 0
− sin t cos t cos t− t sin t 0
− cos t − sin t −2 sin t− t cos t 0
sin t − cos t −3 cos t+ t sin t 1

∣∣∣∣∣∣∣∣ = −2 sin t.

It follows that

u′1(t) =
[
− sin2 t+ t sin t cos t

]
/2, u ′2(t) =

[
t sin2 t+ sin t, cos t

]
/2,

u ′3(t) = − sin t cos t/2, and u ′4(t) = − sin2 t/2 .

Hence

u1(t) = (3 sin t cos t− 2t cos2 t− t)/8, u2(t) = (sin2 t− 2 cos2 t− 2t sin t cos t+ t2)/8,

u3(t) = − sin2 t/4, and u4(t) = [cos t sin t− t] /4.

Therefore the particular solution can be expressed as Y (t) = u1(t) cos t+ u2(t) sin t+
u3(t)t cos t+ u4(t)t sin t = (sin t− 3t cos t− t2 sin t)/8. Note that only the last term
is not a solution of the homogeneous equation. Hence the general solution is
y(t) = c1 cos t+ c2 sin t + t [c3 cos t+ c4 sin t ]− t2 sin t /8.

8. Based on the results in Problem 2 , yc(t) = c1 + c2e
t + c3e

−t. It was also shown
that W (1, et, e−t) = 2 , with W1(t) = −2 , W2(t) = e−t, W3(t) = et. Therefore we
have u ′1(t) = − csc t , u ′2(t) = e−t csc t /2 , u ′3(t) = et csc t /2 . The particular solu-
tion can be expressed as Y (t) = [u1(t)] + e−t [u2(t)] + et [u3(t)]. More specifically,

Y (t) = ln |csc(t) + cot(t)|+ et

2

∫ t

t0

e−s csc(s)ds+
e−t

2

∫ t

t0

es csc(s)ds

= ln |csc(t) + cot(t)|+
∫ t

t0

cosh(t− s) csc(s)ds .

9. Based on Problem 4 , u ′1(t) = sec t , u ′2(t) = −1 , u ′3(t) = − tan t . The particu-
lar solution can be expressed as Y (t) = [u1(t)] + cos t [u2(t)] + sin t [u3(t)]. That
is, Y (t) = ln |sec(t) + tan(t)| − t cos t+ sin t ln |cos(t)|. Hence the general solution
of the initial value problem is y(t) = c1 + c2 cos t+ c3 sin t + ln |sec(t) + tan(t)| −
t cos t+ sin t ln |cos(t)|. Invoking the initial conditions, we require that c1 + c2 =
2 , c3 = 1 , −c2 = −2 . Therefore y(t) = 2 cos t+ sin t+ ln |sec(t) + tan(t)| − t cos t+
sin t ln |cos(t)|. Since −π/2 < t < π/2, the absolute value signs may be removed.
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10. From Problem 6, y(t) = c1 cos t+ c2 sin t+ c3t cos t+ c4t sin t− t2 sin t/8. In or-
der to satisfy the initial conditions, we require that c1 = 2 , c2 + c3 = 0 , −c1 + 2c4 =
−1 , −3/4− c2 − 3c3 = 1 . Therefore y(t) = (7 sin t− 7t cos t+ 4t sin t− t2 sin t)/8 +
2 cos t.

12. From Problem 8, the general solution of the initial value problem is

y(t) = c1 + c2e
t + c3e

−t + ln |csc(t) + cot(t)|+

+
et

2

∫ t

t0

e−s csc(s)ds+
e−t

2

∫ t

t0

es csc(s)ds.

In this case, t0 = π/2 . Observe that y(π/2) = yc(π/2) , y ′(π/2) = y ′c(π/2) , and
y ′′(π/2) = y ′′c (π/2) . Therefore we obtain the system of equations

c1 + c2e
π/2 + c3e

−π/2 = 2,

c2e
π/2 − c3e−π/2 = 1,

c2e
π/2 + c3e

−π/2 = −1.

Hence the solution of the initial value problem is

y(t) = 3− e−t+π/2 + ln |csc(t) + cot(t)|+
∫ t

π/2

cosh(t− s) csc(s)ds .
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13. First write the equation as y ′′′ + x−1y ′′ − 2x−2y ′ + 2x−3y = 2x . The Wron-
skian is evaluated as W (x, x2, 1/x) = 6/x . Now compute the three determinants

W1(x) =

∣∣∣∣∣∣
0 x2 1/x
0 2x −1/x2

1 2 2/x3

∣∣∣∣∣∣ = −3, W2(x) =

∣∣∣∣∣∣
x 0 1/x
1 0 −1/x2

0 1 2/x3

∣∣∣∣∣∣ = 2/x,

W3(x) =

∣∣∣∣∣∣
x x2 0
1 2x 0
0 2 1

∣∣∣∣∣∣ = x2.

Hence u ′1(x) = −x2 , u ′2(x) = 2x/3 , u ′3(x) = x4/3 . Therefore the particular solu-
tion can be expressed as

Y (x) = x
[
−x3/3

]
+ x2

[
x2/3

]
+

1

x

[
x5/15

]
= x4/15 .

15. The homogeneous solution is yc(t) = c1 cos t+ c2 sin t + c3 cosh t+ c4 sinh t.
The Wronskian is evaluated as W (cos t, sin t, cosh t, sinh t) = 4. Now the four
additional determinants are given by W1(t) = 2 sin t, W2(t) = −2 cos t, W3(t) =
−2 sinh t, W4(t) = 2 cosh t. If follows that

u ′1(t) = g(t) sin(t)/2, u ′2(t) = −g(t) cos(t)/2,

u ′3(t) = −g(t) sinh(t)/2, u ′4(t) = g(t) cosh(t)/2.

Therefore the particular solution can be expressed as

Y (t) =
cos(t)

2

∫ t

t0

g(s) sin(s) ds− sin(t)

2

∫ t

t0

g(s) cos(s) ds−

− cosh(t)

2

∫ t

t0

g(s) sinh(s) ds+
sinh(t)

2

∫ t

t0

g(s) cosh(s) ds .

Using the appropriate identities, the integrals can be combined to obtain

Y (t) =
1

2

∫ t

t0

g(s) sinh(t− s) ds− 1

2

∫ t

t0

g(s) sin(t− s) ds .

17. First write the equation as y ′′′ − 3x−1y ′′ + 6x−2y ′ − 6x−3y = g(x) / x3 . It
can be shown that yc(x) = c1x+ c2 x

2 + c3 x
3 is a solution of the homogeneous

equation. The Wronskian of this fundamental set of solutions is W (x, x2, x3) =
2x3. The three additional determinants are given by W1(x) = x4, W2(x) = −2x3,
W3(x) = x2. Hence u ′1(x) = g(x)/2x2 , u ′2(x) = −g(x) /x3, u ′3(x) = g(x)/2x4. Now
the particular solution can be expressed as

Y (x) = x

∫ x

x0

g(t)

2t2
dt− x2

∫ x

x0

g(t)

t3
dt+ x3

∫ x

x0

g(t)

2t4
dt =

=
1

2

∫ x

x0

[
x

t2
− 2x2

t3
+
x3

t4

]
g(t)dt .


