CHAPTER

 5
Series Solutions of Second Order

Linear Equations

5.1

1. Apply the ratio test:

$$
\lim _{n \rightarrow \infty} \frac{\left|(x-3)^{n+1}\right|}{\left|(x-3)^{n}\right|}=\lim _{n \rightarrow \infty}|x-3|=|x-3| .
$$

Hence the series converges absolutely for $|x-3|<1$. The radius of convergence is $\rho=1$. The series diverges for $x=2$ and $x=4$, since the n-th term does not approach zero.
3. Applying the ratio test,

$$
\lim _{n \rightarrow \infty} \frac{\left|n!x^{2 n+2}\right|}{\left|(n+1)!x^{2 n}\right|}=\lim _{n \rightarrow \infty} \frac{x^{2}}{n+1}=0 .
$$

The series converges absolutely for all values of x. Thus the radius of convergence is $\rho=\infty$.
4. Apply the ratio test:

$$
\lim _{n \rightarrow \infty} \frac{\left|2^{n+1} x^{n+1}\right|}{\left|2^{n} x^{n}\right|}=\lim _{n \rightarrow \infty} 2|x|=2|x| .
$$

Hence the series converges absolutely for $2|x|<1$, or $|x|<1 / 2$. The radius of convergence is $\rho=1 / 2$. The series diverges for $x= \pm 1 / 2$, since the n-th term does not approach zero.
6. Applying the ratio test,

$$
\lim _{n \rightarrow \infty} \frac{\left|n\left(x-x_{0}\right)^{n+1}\right|}{\left|(n+1)\left(x-x_{0}\right)^{n}\right|}=\lim _{n \rightarrow \infty} \frac{n}{n+1}\left|\left(x-x_{0}\right)\right|=\left|\left(x-x_{0}\right)\right|
$$

Hence the series converges absolutely for $\left|\left(x-x_{0}\right)\right|<1$. The radius of convergence is $\rho=1$. At $x=x_{0}+1$, we obtain the harmonic series, which is divergent. At the other endpoint, $x=x_{0}-1$, we obtain

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

which is conditionally convergent.
7. Apply the ratio test :

$$
\lim _{n \rightarrow \infty} \frac{\left|3^{n}(n+1)^{2}(x+2)^{n+1}\right|}{\left|3^{n+1} n^{2}(x+2)^{n}\right|}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{3 n^{2}}|(x+2)|=\frac{1}{3}|(x+2)| .
$$

Hence the series converges absolutely for $\frac{1}{3}|x+2|<1$, or $|x+2|<3$. The radius of convergence is $\rho=3$. At $x=-5$ and $x=+1$, the series diverges, since the n-th term does not approach zero.
8. Applying the ratio test,

$$
\lim _{n \rightarrow \infty} \frac{\left|n^{n}(n+1)!x^{n+1}\right|}{\left|(n+1)^{n+1} n!x^{n}\right|}=\lim _{n \rightarrow \infty} \frac{n^{n}}{(n+1)^{n}}|x|=\frac{1}{e}|x|
$$

since

$$
\lim _{n \rightarrow \infty} \frac{n^{n}}{(n+1)^{n}}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{-n}=e^{-1}
$$

Hence the series converges absolutely for $|x|<e$. The radius of convergence is $\rho=e$. At $x= \pm e$, the series diverges, since the n-th term does not approach zero. This follows from the fact that

$$
\lim _{n \rightarrow \infty} \frac{n!e^{n}}{n^{n} \sqrt{2 \pi n}}=1
$$

10. We have $f(x)=e^{x}$, with $f^{(n)}(x)=e^{x}$, for $n=1,2, \ldots$ Therefore $f^{(n)}(0)=1$. Hence the Taylor expansion about $x_{0}=0$ is

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

Applying the ratio test,

$$
\lim _{n \rightarrow \infty} \frac{\left|n!x^{n+1}\right|}{\left|(n+1)!x^{n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{n+1}|x|=0
$$

The radius of convergence is $\rho=\infty$.
11. We have $f(x)=x$, with $f^{\prime}(x)=1$ and $f^{(n)}(x)=0$, for $n=2, \ldots$ Clearly, $f(1)=1$ and $f^{\prime}(1)=1$, with all other derivatives equal to zero. Hence the Taylor expansion about $x_{0}=1$ is

$$
x=1+(x-1) .
$$

Since the series has only a finite number of terms, it converges absolutely for all x.
14. We have $f(x)=1 /(1+x), f^{\prime}(x)=-1 /(1+x)^{2}, f^{\prime \prime}(x)=2 /(1+x)^{3}, \ldots$ with $f^{(n)}(x)=(-1)^{n} n!/(1+x)^{n+1}$, for $n \geq 1$. It follows that $f^{(n)}(0)=(-1)^{n} n$! for $n \geq 0$. Hence the Taylor expansion about $x_{0}=0$ is

$$
\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}
$$

Applying the ratio test,

$$
\lim _{n \rightarrow \infty} \frac{\left|x^{n+1}\right|}{\left|x^{n}\right|}=\lim _{n \rightarrow \infty}|x|=|x|
$$

The series converges absolutely for $|x|<1$, but diverges at $x= \pm 1$.
15. We have $f(x)=1 /(1-x), f^{\prime}(x)=1 /(1-x)^{2}, f^{\prime \prime}(x)=2 /(1-x)^{3}, \ldots$ with $f^{(n)}(x)=n!/(1-x)^{n+1}$, for $n \geq 1$. It follows that $f^{(n)}(0)=n!$, for $n \geq 0$. Hence the Taylor expansion about $x_{0}=0$ is

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

Applying the ratio test,

$$
\lim _{n \rightarrow \infty} \frac{\left|x^{n+1}\right|}{\left|x^{n}\right|}=\lim _{n \rightarrow \infty}|x|=|x|
$$

The series converges absolutely for $|x|<1$, but diverges at $x= \pm 1$.
16. We have $f(x)=1 /(1-x), f^{\prime}(x)=1 /(1-x)^{2}, f^{\prime \prime}(x)=2 /(1-x)^{3}, \ldots$ with $f^{(n)}(x)=n!/(1-x)^{n+1}$, for $n \geq 1$. It follows that $f^{(n)}(2)=(-1)^{n+1} n$! for $n \geq 0$. Hence the Taylor expansion about $x_{0}=2$ is

$$
\frac{1}{1-x}=-\sum_{n=0}^{\infty}(-1)^{n}(x-2)^{n}
$$

Applying the ratio test,

$$
\lim _{n \rightarrow \infty} \frac{\left|(x-2)^{n+1}\right|}{\left|(x-2)^{n}\right|}=\lim _{n \rightarrow \infty}|x-2|=|x-2|
$$

The series converges absolutely for $|x-2|<1$, but diverges at $x=1$ and $x=3$.
17. Applying the ratio test,

$$
\lim _{n \rightarrow \infty} \frac{\left|(n+1) x^{n+1}\right|}{\left|n x^{n}\right|}=\lim _{n \rightarrow \infty} \frac{n+1}{n}|x|=|x|
$$

The series converges absolutely for $|x|<1$. Term-by-term differentiation results in

$$
\begin{gathered}
y^{\prime}=\sum_{n=1}^{\infty} n^{2} x^{n-1}=1+4 x+9 x^{2}+16 x^{3}+\ldots \\
y^{\prime \prime}=\sum_{n=2}^{\infty} n^{2}(n-1) x^{n-2}=4+18 x+48 x^{2}+100 x^{3}+\ldots
\end{gathered}
$$

Shifting the indices, we can also write

$$
y^{\prime}=\sum_{n=0}^{\infty}(n+1)^{2} x^{n} \quad \text { and } \quad y^{\prime \prime}=\sum_{n=0}^{\infty}(n+2)^{2}(n+1) x^{n}
$$

20. Shifting the index in the second series, that is, setting $n=k+1$,

$$
\sum_{k=0}^{\infty} a_{k} x^{k+1}=\sum_{n=1}^{\infty} a_{n-1} x^{n}
$$

Hence

$$
\begin{aligned}
\sum_{k=0}^{\infty} a_{k+1} x^{k}+\sum_{k=0}^{\infty} a_{k} x^{k+1} & =\sum_{k=0}^{\infty} a_{k+1} x^{k}+\sum_{k=1}^{\infty} a_{k-1} x^{k} \\
& =a_{1}+\sum_{k=1}^{\infty}\left(a_{k+1}+a_{k-1}\right) x^{k+1}
\end{aligned}
$$

21. Shifting the index by 2 , that is, setting $m=n-2$,

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{m=0}^{\infty}(m+2)(m+1) a_{m+2} x^{m} \\
& =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}
\end{aligned}
$$

22. Shift the index down by 2 , that is, set $m=n+2$. It follows that

$$
\sum_{n=0}^{\infty} a_{n} x^{n+2}=\sum_{m=2}^{\infty} a_{m-2} x^{m}=\sum_{n=2}^{\infty} a_{n-2} x^{n}
$$

24. Clearly,

$$
\left(1-x^{2}\right) \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}
$$

Shifting the index in the first series, that is, setting $k=n-2$,

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{k=0}^{\infty}(k+2)(k+1) a_{k+2} x^{k} \\
& =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}
\end{aligned}
$$

Hence

$$
\left(1-x^{2}\right) \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}
$$

Note that when $n=0$ and $n=1$, the coefficients in the second series are zero. So

$$
\left(1-x^{2}\right) \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}-n(n-1) a_{n}\right] x^{n}
$$

26. Clearly,

$$
\sum_{n=1}^{\infty} n a_{n} x^{n-1}+x \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}+\sum_{n=0}^{\infty} a_{n} x^{n+1}
$$

Shifting the index in the first series, that is, setting $k=n-1$,

$$
\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{k=0}^{\infty}(k+1) a_{k+1} x^{k}
$$

Shifting the index in the second series, that is, setting $k=n+1$,

$$
\sum_{n=0}^{\infty} a_{n} x^{n+1}=\sum_{k=1}^{\infty} a_{k-1} x^{k}
$$

Combining the series, and starting the summation at $n=1$,

$$
\sum_{n=1}^{\infty} n a_{n} x^{n-1}+x \sum_{n=0}^{\infty} a_{n} x^{n}=a_{1}+\sum_{n=1}^{\infty}\left[(n+1) a_{n+1}+a_{n-1}\right] x^{n}
$$

27. We note that

$$
x \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-1}+\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Shifting the index in the first series, that is, setting $k=n-1$,

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-1}=\sum_{k=1}^{\infty} k(k+1) a_{k+1} x^{k}=\sum_{k=0}^{\infty} k(k+1) a_{k+1} x^{k}
$$

since the coefficient of the term associated with $k=0$ is zero. Combining the series,

$$
x \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty}\left[n(n+1) a_{n+1}+a_{n}\right] x^{n}
$$

1. (a,b,d) Let $y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$. Then

$$
y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n} .
$$

Substitution into the ODE results in

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

or

$$
\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}-a_{n}\right] x^{n}=0 .
$$

Equating all the coefficients to zero,

$$
(n+2)(n+1) a_{n+2}-a_{n}=0, \quad n=0,1,2, \ldots .
$$

We obtain the recurrence relation

$$
a_{n+2}=\frac{a_{n}}{(n+1)(n+2)}, \quad n=0,1,2, \ldots .
$$

The subscripts differ by two, so for $k=1,2, \ldots$

$$
a_{2 k}=\frac{a_{2 k-2}}{(2 k-1) 2 k}=\frac{a_{2 k-4}}{(2 k-3)(2 k-2)(2 k-1) 2 k}=\ldots=\frac{a_{0}}{(2 k)!}
$$

and

$$
a_{2 k+1}=\frac{a_{2 k-1}}{2 k(2 k+1)}=\frac{a_{2 k-3}}{(2 k-2)(2 k-1) 2 k(2 k+1)}=\ldots=\frac{a_{1}}{(2 k+1)!} .
$$

Hence

$$
y=a_{0} \sum_{k=0}^{\infty} \frac{x^{2 k}}{(2 k)!}+a_{1} \sum_{k=0}^{\infty} \frac{x^{2 k+1}}{(2 k+1)!} .
$$

The linearly independent solutions are

$$
\begin{aligned}
& y_{1}=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\ldots=\cosh x \\
& y_{2}=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\ldots=\sinh x .
\end{aligned}
$$

(c) The Wronskian at 0 is 1 .
4. $(\mathrm{a}, \mathrm{b}, \mathrm{d})$ Let $y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$. Then

$$
y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n} .
$$

Substitution into the ODE results in

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+k^{2} x^{2} \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Rewriting the second summation,

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=2}^{\infty} k^{2} a_{n-2} x^{n}=0
$$

that is,

$$
2 a_{2}+3 \cdot 2 a_{3} x+\sum_{n=2}^{\infty}\left[(n+2)(n+1) a_{n+2}+k^{2} a_{n-2}\right] x^{n}=0
$$

Setting the coefficients equal to zero, we have $a_{2}=0, a_{3}=0$, and

$$
(n+2)(n+1) a_{n+2}+k^{2} a_{n-2}=0, \quad \text { for } n=2,3,4, \ldots
$$

The recurrence relation can be written as

$$
a_{n+2}=-\frac{k^{2} a_{n-2}}{(n+2)(n+1)}, \quad n=2,3,4, \ldots
$$

The indices differ by four, so $a_{4}, a_{8}, a_{12}, \ldots$ are defined by

$$
a_{4}=-\frac{k^{2} a_{0}}{4 \cdot 3}, a_{8}=-\frac{k^{2} a_{4}}{8 \cdot 7}, a_{12}=-\frac{k^{2} a_{8}}{12 \cdot 11}, \ldots
$$

Similarly, $a_{5}, a_{9}, a_{13}, \ldots$ are defined by

$$
a_{5}=-\frac{k^{2} a_{1}}{5 \cdot 4}, a_{9}=-\frac{k^{2} a_{5}}{9 \cdot 8}, a_{13}=-\frac{k^{2} a_{9}}{13 \cdot 12}, \ldots
$$

The remaining coefficients are zero. Therefore the general solution is

$$
\begin{aligned}
y & =a_{0}\left[1-\frac{k^{2}}{4 \cdot 3} x^{4}+\frac{k^{4}}{8 \cdot 7 \cdot 4 \cdot 3} x^{8}-\frac{k^{6}}{12 \cdot 11 \cdot 8 \cdot 7 \cdot 4 \cdot 3} x^{12}+\ldots\right]+ \\
& +a_{1}\left[x-\frac{k^{2}}{5 \cdot 4} x^{5}+\frac{k^{4}}{9 \cdot 8 \cdot 5 \cdot 4} x^{9}-\frac{k^{6}}{13 \cdot 12 \cdot 9 \cdot 8 \cdot 4 \cdot 4} x^{13}+\ldots\right] .
\end{aligned}
$$

Note that for the even coefficients,

$$
a_{4 m}=-\frac{k^{2} a_{4 m-4}}{(4 m-1) 4 m}, \quad m=1,2,3, \ldots
$$

and for the odd coefficients,

$$
a_{4 m+1}=-\frac{k^{2} a_{4 m-3}}{4 m(4 m+1)}, \quad m=1,2,3, \ldots
$$

Hence the linearly independent solutions are

$$
\begin{gathered}
y_{1}(x)=1+\sum_{m=0}^{\infty} \frac{(-1)^{m+1}\left(k^{2} x^{4}\right)^{m+1}}{3 \cdot 4 \cdot 7 \cdot 8 \ldots(4 m+3)(4 m+4)} \\
y_{2}(x)=x\left[1+\sum_{m=0}^{\infty} \frac{(-1)^{m+1}\left(k^{2} x^{4}\right)^{m+1}}{4 \cdot 5 \cdot 8 \cdot 9 \ldots(4 m+4)(4 m+5)}\right] .
\end{gathered}
$$

(c) The Wronskian at 0 is 1 .
6.(a,b) Let $y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$ Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
$$

and

$$
y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n} .
$$

Substitution into the ODE results in

$$
\left(2+x^{2}\right) \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-x \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}+4 \sum_{n=0}^{\infty} a_{n} x^{n}=0 .
$$

Before proceeding, write

$$
x^{2} \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}
$$

and

$$
x \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}=\sum_{n=1}^{\infty} n a_{n} x^{n}
$$

It follows that

$$
\begin{gathered}
4 a_{0}+4 a_{2}+\left(3 a_{1}+12 a_{3}\right) x+ \\
+\sum_{n=2}^{\infty}\left[2(n+2)(n+1) a_{n+2}+n(n-1) a_{n}-n a_{n}+4 a_{n}\right] x^{n}=0
\end{gathered}
$$

Equating the coefficients to zero, we find that $a_{2}=-a_{0}, a_{3}=-a_{1} / 4$, and

$$
a_{n+2}=-\frac{n^{2}-2 n+4}{2(n+2)(n+1)} a_{n}, \quad n=0,1,2, \ldots
$$

The indices differ by two, so for $k=0,1,2, \ldots$

$$
a_{2 k+2}=-\frac{(2 k)^{2}-4 k+4}{2(2 k+2)(2 k+1)} a_{2 k}
$$

and

$$
a_{2 k+3}=-\frac{(2 k+1)^{2}-4 k+2}{2(2 k+3)(2 k+2)} a_{2 k+1} .
$$

Hence the linearly independent solutions are

$$
\begin{gathered}
y_{1}(x)=1-x^{2}+\frac{x^{4}}{6}-\frac{x^{6}}{30}+\ldots \\
y_{2}(x)=x-\frac{x^{3}}{4}+\frac{7 x^{5}}{160}-\frac{19 x^{7}}{1920}+\ldots
\end{gathered}
$$

(c) The Wronskian at 0 is 1 .
7.(a,b,d) Let $y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$ Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
$$

and

$$
y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n} .
$$

Substitution into the ODE results in

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+x \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}+2 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

First write

$$
x \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}=\sum_{n=1}^{\infty} n a_{n} x^{n}
$$

We then obtain

$$
2 a_{2}+2 a_{0}+\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}+n a_{n}+2 a_{n}\right] x^{n}=0
$$

It follows that $a_{2}=-a_{0}$ and $a_{n+2}=-a_{n} /(n+1), n=0,1,2, \ldots$ Note that the indices differ by two, so for $k=1,2, \ldots$

$$
a_{2 k}=-\frac{a_{2 k-2}}{2 k-1}=\frac{a_{2 k-4}}{(2 k-3)(2 k-1)}=\ldots=\frac{(-1)^{k} a_{0}}{1 \cdot 3 \cdot 5 \ldots(2 k-1)}
$$

and

$$
a_{2 k+1}=-\frac{a_{2 k-1}}{2 k}=\frac{a_{2 k-3}}{(2 k-2) 2 k}=\ldots=\frac{(-1)^{k} a_{1}}{2 \cdot 4 \cdot 6 \ldots(2 k)} .
$$

Hence the linearly independent solutions are

$$
\begin{aligned}
& y_{1}(x)=1-\frac{x^{2}}{1}+\frac{x^{4}}{1 \cdot 3}-\frac{x^{6}}{1 \cdot 3 \cdot 5}+\ldots=1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{1 \cdot 3 \cdot 5 \ldots(2 n-1)} \\
& y_{2}(x)=x-\frac{x^{3}}{2}+\frac{x^{5}}{2 \cdot 4}-\frac{x^{7}}{2 \cdot 4 \cdot 6}+\ldots=x+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 \cdot 4 \cdot 6 \ldots(2 n)}
\end{aligned}
$$

(c) The Wronskian at 0 is 1 .
9. (a,b,d) Let $y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$ Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
$$

and

$$
y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}
$$

Substitution into the ODE results in

$$
\left(1+x^{2}\right) \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-4 x \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}+6 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Before proceeding, write

$$
x^{2} \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}
$$

and

$$
x \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}=\sum_{n=1}^{\infty} n a_{n} x^{n}
$$

It follows that

$$
\begin{gathered}
6 a_{0}+2 a_{2}+\left(2 a_{1}+6 a_{3}\right) x+ \\
+\sum_{n=2}^{\infty}\left[(n+2)(n+1) a_{n+2}+n(n-1) a_{n}-4 n a_{n}+6 a_{n}\right] x^{n}=0
\end{gathered}
$$

Setting the coefficients equal to zero, we obtain $a_{2}=-3 a_{0}, a_{3}=-a_{1} / 3$, and

$$
a_{n+2}=-\frac{(n-2)(n-3)}{(n+1)(n+2)} a_{n}, \quad n=0,1,2, \ldots
$$

Observe that for $n=2$ and $n=3$, we obtain $a_{4}=a_{5}=0$. Since the indices differ by two, we also have $a_{n}=0$ for $n \geq 4$. Therefore the general solution is a polynomial

$$
y=a_{0}+a_{1} x-3 a_{0} x^{2}-a_{1} x^{3} / 3
$$

Hence the linearly independent solutions are

$$
y_{1}(x)=1-3 x^{2} \quad \text { and } \quad y_{2}(x)=x-x^{3} / 3
$$

(c) The Wronskian is $\left(x^{2}+1\right)^{2}$. At $x=0$ it is 1 .
10. $(\mathrm{a}, \mathrm{b}, \mathrm{d})$ Let $y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$. Then

$$
y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}
$$

Substitution into the ODE results in

$$
\left(4-x^{2}\right) \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+2 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

First write

$$
x^{2} \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}
$$

It follows that

$$
2 a_{0}+8 a_{2}+\left(2 a_{1}+24 a_{3}\right) x+
$$

$$
+\sum_{n=2}^{\infty}\left[4(n+2)(n+1) a_{n+2}-n(n-1) a_{n}+2 a_{n}\right] x^{n}=0
$$

We obtain $a_{2}=-a_{0} / 4, a_{3}=-a_{1} / 12$ and

$$
4(n+2) a_{n+2}=(n-2) a_{n}, \quad n=0,1,2, \ldots
$$

Note that for $n=2, a_{4}=0$. Since the indices differ by two, we also have $a_{2 k}=0$ for $k=2,3, \ldots$ On the other hand, for $k=1,2, \ldots$,

$$
a_{2 k+1}=\frac{(2 k-3) a_{2 k-1}}{4(2 k+1)}=\frac{(2 k-5)(2 k-3) a_{2 k-3}}{4^{2}(2 k-1)(2 k+1)}=\ldots=\frac{-a_{1}}{4^{k}(2 k-1)(2 k+1)} .
$$

Therefore the general solution is

$$
y=a_{0}+a_{1} x-a_{0} \frac{x^{2}}{4}-a_{1} \sum_{n=1}^{\infty} \frac{x^{2 n+1}}{4^{n}(2 n-1)(2 n+1)} .
$$

Hence the linearly independent solutions are $y_{1}(x)=1-x^{2} / 4$ and

$$
y_{2}(x)=x-\frac{x^{3}}{12}-\frac{x^{5}}{240}-\frac{x^{7}}{2240}-\ldots=x-\sum_{n=1}^{\infty} \frac{x^{2 n+1}}{4^{n}(2 n-1)(2 n+1)}
$$

(c) The Wronskian at 0 is 1 .
11. $(\mathrm{a}, \mathrm{b}, \mathrm{d})$ Let $y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$ Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
$$

and

$$
y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n} .
$$

Substitution into the ODE results in

$$
\left(3-x^{2}\right) \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-3 x \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Before proceeding, write

$$
x^{2} \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}
$$

and

$$
x \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}=\sum_{n=1}^{\infty} n a_{n} x^{n}
$$

It follows that

$$
\begin{gathered}
6 a_{2}-a_{0}+\left(-4 a_{1}+18 a_{3}\right) x+ \\
+\sum_{n=2}^{\infty}\left[3(n+2)(n+1) a_{n+2}-n(n-1) a_{n}-3 n a_{n}-a_{n}\right] x^{n}=0 .
\end{gathered}
$$

We obtain $a_{2}=a_{0} / 6,2 a_{3}=a_{1} / 9$, and

$$
3(n+2) a_{n+2}=(n+1) a_{n}, \quad n=0,1,2, \ldots
$$

The indices differ by two, so for $k=1,2, \ldots$

$$
a_{2 k}=\frac{(2 k-1) a_{2 k-2}}{3(2 k)}=\frac{(2 k-3)(2 k-1) a_{2 k-4}}{3^{2}(2 k-2)(2 k)}=\ldots=\frac{3 \cdot 5 \ldots(2 k-1) a_{0}}{3^{k} \cdot 2 \cdot 4 \ldots(2 k)}
$$

and

$$
a_{2 k+1}=\frac{(2 k) a_{2 k-1}}{3(2 k+1)}=\frac{(2 k-2)(2 k) a_{2 k-3}}{3^{2}(2 k-1)(2 k+1)}=\ldots=\frac{2 \cdot 4 \cdot 6 \ldots(2 k) a_{1}}{3^{k} \cdot 3 \cdot 5 \ldots(2 k+1)}
$$

Hence the linearly independent solutions are

$$
\begin{gathered}
y_{1}(x)=1+\frac{x^{2}}{6}+\frac{x^{4}}{24}+\frac{5 x^{6}}{432}+\ldots=1+\sum_{n=1}^{\infty} \frac{3 \cdot 5 \ldots(2 n-1) x^{2 n}}{3^{n} \cdot 2 \cdot 4 \ldots(2 n)} \\
y_{2}(x)=x+\frac{2 x^{3}}{9}+\frac{8 x^{5}}{135}+\frac{16 x^{7}}{945}+\ldots=x+\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \ldots(2 n) x^{2 n+1}}{3^{n} \cdot 3 \cdot 5 \ldots(2 n+1)}
\end{gathered}
$$

(c) The Wronskian at 0 is 1.
12. $(\mathrm{a}, \mathrm{b}, \mathrm{d})$ Let $y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$. Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
$$

and

$$
y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n} .
$$

Substitution into the ODE results in

$$
(1-x) \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+x \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Before proceeding, write

$$
x \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}=\sum_{n=1}^{\infty}(n+1) n a_{n+1} x^{n}
$$

and

$$
x \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}=\sum_{n=1}^{\infty} n a_{n} x^{n}
$$

It follows that

$$
2 a_{2}-a_{0}+\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}-(n+1) n a_{n+1}+n a_{n}-a_{n}\right] x^{n}=0
$$

We obtain $a_{2}=a_{0} / 2$ and

$$
(n+2)(n+1) a_{n+2}-(n+1) n a_{n+1}+(n-1) a_{n}=0
$$

for $n=0,1,2, \ldots$ Writing out the individual equations,

$$
\begin{array}{r}
3 \cdot 2 a_{3}-2 \cdot 1 a_{2}=0 \\
4 \cdot 3 a_{4}-3 \cdot 2 a_{3}+a_{2}=0 \\
5 \cdot 4 a_{5}-4 \cdot 3 a_{4}+2 a_{3}=0 \\
6 \cdot 5 a_{6}-5 \cdot 4 a_{5}+3 a_{4}=0
\end{array}
$$

The coefficients are calculated successively as $a_{3}=a_{0} /(2 \cdot 3), a_{4}=a_{3} / 2-a_{2} / 12=$ $a_{0} / 24, a_{5}=3 a_{4} / 5-a_{3} / 10=a_{0} / 120, \ldots$. We can now see that for $n \geq 2, a_{n}$ is proportional to a_{0}. In fact, for $n \geq 2, a_{n}=a_{0} /(n!)$. Therefore the general solution is

$$
y=a_{0}+a_{1} x+\frac{a_{0} x^{2}}{2!}+\frac{a_{0} x^{3}}{3!}+\frac{a_{0} x^{4}}{4!}+\ldots
$$

Hence the linearly independent solutions are $y_{2}(x)=x$ and

$$
y_{1}(x)=1+\sum_{n=2}^{\infty} \frac{x^{n}}{n!}=e^{x}-x
$$

(c) The Wronskian is $e^{x}(1-x)$. At $x=0$ it is 1 .
13. $(\mathrm{a}, \mathrm{b}, \mathrm{d})$ Let $y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$. Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
$$

and

$$
y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n} .
$$

Substitution into the ODE results in

$$
2 \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+x \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}+3 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

First write

$$
x \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}=\sum_{n=1}^{\infty} n a_{n} x^{n}
$$

We then obtain

$$
4 a_{2}+3 a_{0}+\sum_{n=1}^{\infty}\left[2(n+2)(n+1) a_{n+2}+n a_{n}+3 a_{n}\right] x^{n}=0
$$

It follows that $a_{2}=-3 a_{0} / 4$ and

$$
2(n+2)(n+1) a_{n+2}+(n+3) a_{n}=0
$$

for $n=0,1,2, \ldots$ The indices differ by two, so for $k=1,2, \ldots$

$$
\begin{aligned}
a_{2 k} & =-\frac{(2 k+1) a_{2 k-2}}{2(2 k-1)(2 k)}=\frac{(2 k-1)(2 k+1) a_{2 k-4}}{2^{2}(2 k-3)(2 k-2)(2 k-1)(2 k)}=\ldots \\
& =\frac{(-1)^{k} 3 \cdot 5 \ldots(2 k+1)}{2^{k}(2 k)!} a_{0}
\end{aligned}
$$

and

$$
\begin{aligned}
a_{2 k+1} & =-\frac{(2 k+2) a_{2 k-1}}{2(2 k)(2 k+1)}=\frac{(2 k)(2 k+2) a_{2 k-3}}{2^{2}(2 k-2)(2 k-1)(2 k)(2 k+1)}=\ldots \\
& =\frac{(-1)^{k} 4 \cdot 6 \ldots(2 k)(2 k+2)}{2^{k}(2 k+1)!} a_{1}
\end{aligned}
$$

Hence the linearly independent solutions are

$$
\begin{gathered}
y_{1}(x)=1-\frac{3}{4} x^{2}+\frac{5}{32} x^{4}-\frac{7}{384} x^{6}+\ldots=\sum_{n=0}^{\infty} \frac{(-1)^{n} 3 \cdot 5 \ldots(2 n+1)}{2^{n}(2 n)!} x^{2 n} \\
y_{2}(x)=x-\frac{1}{3} x^{3}+\frac{1}{20} x^{5}-\frac{1}{210} x^{7}+\ldots=x+\sum_{n=1}^{\infty} \frac{(-1)^{n} 4 \cdot 6 \ldots(2 n+2)}{2^{n}(2 n+1)!} x^{2 n+1} .
\end{gathered}
$$

(c) The Wronskian at 0 is 1.
15.(a) From Problem 2, we have

$$
y_{1}(x)=\sum_{n=0}^{\infty} \frac{x^{2 n}}{2^{n} n!} \quad \text { and } \quad y_{2}(x)=\sum_{n=0}^{\infty} \frac{2^{n} n!x^{2 n+1}}{(2 n+1)!}
$$

Since $a_{0}=y(0)$ and $a_{1}=y^{\prime}(0)$, we have $y(x)=2 y_{1}(x)+y_{2}(x)$. That is,

$$
y(x)=2+x+x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}+\frac{1}{15} x^{5}+\frac{1}{24} x^{6}+\ldots
$$

The four- and five-term polynomial approximations are

$$
p_{4}=2+x+x^{2}+x^{3} / 3, \text { and } p_{5}=2+x+x^{2}+x^{3} / 3+x^{4} / 4
$$

(b)

(c) The four-term approximation p_{4} appears to be reasonably accurate (within 10\%) on the interval $|x|<0.7$.
17.(a) From Problem 7, the linearly independent solutions are

$$
y_{1}(x)=1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{1 \cdot 3 \cdot 5 \ldots(2 n-1)} \text { and } y_{2}(x)=x+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 \cdot 4 \cdot 6 \ldots(2 n)} \text {. }
$$

Since $a_{0}=y(0)$ and $a_{1}=y^{\prime}(0)$, we have $y(x)=4 y_{1}(x)-y_{2}(x)$. That is,

$$
y(x)=4-x-4 x^{2}+\frac{1}{2} x^{3}+\frac{4}{3} x^{4}-\frac{1}{8} x^{5}-\frac{4}{15} x^{6}+\ldots .
$$

The four- and five-term polynomial approximations are

$$
p_{4}=4-x-4 x^{2}+\frac{1}{2} x^{3}, \text { and } p_{5}=4-x-4 x^{2}+\frac{1}{2} x^{3}+\frac{4}{3} x^{4} .
$$

(b)

(c) The four-term approximation p_{4} appears to be reasonably accurate (within 10\%) on the interval $|x|<0.5$.
18.(a) From Problem 12, we have

$$
y_{1}(x)=1+\sum_{n=2}^{\infty} \frac{x^{n}}{n!} \quad \text { and } \quad y_{2}(x)=x .
$$

Since $a_{0}=y(0)$ and $a_{1}=y^{\prime}(0)$, we have $y(x)=-3 y_{1}(x)+2 y_{2}(x)$. That is,

$$
y(x)=-3+2 x-\frac{3}{2} x^{2}-\frac{1}{2} x^{3}-\frac{1}{8} x^{4}-\frac{1}{40} x^{5}-\frac{1}{240} x^{6}+\ldots .
$$

The four- and five-term polynomial approximations are

$$
p_{4}=-3+2 x-\frac{3}{2} x^{2}-\frac{1}{2} x^{3}, \text { and } p_{5}=-3+2 x-\frac{3}{2} x^{2}-\frac{1}{2} x^{3}-\frac{1}{8} x^{4} .
$$

(b)

(c) The four-term approximation p_{4} appears to be reasonably accurate (within 10%) on the interval $|x|<0.9$.
20. Two linearly independent solutions of Airy's equation (about $x_{0}=0$) are

$$
\begin{aligned}
& y_{1}(x)=1+\sum_{n=1}^{\infty} \frac{x^{3 n}}{2 \cdot 3 \ldots(3 n-1)(3 n)} \\
& y_{2}(x)=x+\sum_{n=1}^{\infty} \frac{x^{3 n+1}}{3 \cdot 4 \ldots(3 n)(3 n+1)} .
\end{aligned}
$$

Applying the ratio test to the terms of $y_{1}(x)$,

$$
\lim _{n \rightarrow \infty} \frac{\left|2 \cdot 3 \ldots(3 n-1)(3 n) x^{3 n+3}\right|}{\left|2 \cdot 3 \ldots(3 n+2)(3 n+3) x^{3 n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{(3 n+1)(3 n+2)(3 n+3)}|x|^{3}=0 .
$$

Similarly, applying the ratio test to the terms of $y_{2}(x)$,

$$
\lim _{n \rightarrow \infty} \frac{\left|3 \cdot 4 \ldots(3 n)(3 n+1) x^{3 n+4}\right|}{\left|3 \cdot 4 \ldots(3 n+3)(3 n+4) x^{3 n+1}\right|}=\lim _{n \rightarrow \infty} \frac{1}{(3 n+2)(3 n+3)(3 n+4)}|x|^{3}=0 .
$$

Hence both series converge absolutely for all x.
21. Let $y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$. Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
$$

and

$$
y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n} .
$$

Substitution into the ODE results in

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-2 x \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}+\lambda \sum_{n=0}^{\infty} a_{n} x^{n}=0 .
$$

First write

$$
x \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}=\sum_{n=1}^{\infty} n a_{n} x^{n}
$$

We then obtain

$$
2 a_{2}+\lambda a_{0}+\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}-2 n a_{n}+\lambda a_{n}\right] x^{n}=0
$$

Setting the coefficients equal to zero, it follows that

$$
a_{n+2}=\frac{(2 n-\lambda)}{(n+1)(n+2)} a_{n}
$$

for $n=0,1,2, \ldots$. Note that the indices differ by two, so for $k=1,2, \ldots$

$$
\begin{aligned}
a_{2 k} & =\frac{(4 k-4-\lambda) a_{2 k-2}}{(2 k-1) 2 k}=\frac{(4 k-8-\lambda)(4 k-4-\lambda) a_{2 k-4}}{(2 k-3)(2 k-2)(2 k-1) 2 k} \\
& =(-1)^{k} \frac{\lambda \ldots(\lambda-4 k+8)(\lambda-4 k+4)}{(2 k)!} a_{0} .
\end{aligned}
$$

and

$$
\begin{aligned}
a_{2 k+1} & =\frac{(4 k-2-\lambda) a_{2 k-1}}{2 k(2 k+1)}=\frac{(4 k-6-\lambda)(4 k-2-\lambda) a_{2 k-3}}{(2 k-2)(2 k-1) 2 k(2 k+1)} \\
& =(-1)^{k} \frac{(\lambda-2) \ldots(\lambda-4 k+6)(\lambda-4 k+2)}{(2 k+1)!} a_{1} .
\end{aligned}
$$

Hence the linearly independent solutions of the Hermite equation (about $x_{0}=0$) are

$$
\begin{gathered}
y_{1}(x)=1-\frac{\lambda}{2!} x^{2}+\frac{\lambda(\lambda-4)}{4!} x^{4}-\frac{\lambda(\lambda-4)(\lambda-8)}{6!} x^{6}+\ldots \\
y_{2}(x)=x-\frac{\lambda-2}{3!} x^{3}+\frac{(\lambda-2)(\lambda-6)}{5!} x^{5}-\frac{(\lambda-2)(\lambda-6)(\lambda-10)}{7!} x^{7}+\ldots
\end{gathered}
$$

(b) Based on the recurrence relation

$$
a_{n+2}=\frac{(2 n-\lambda)}{(n+1)(n+2)} a_{n}
$$

the series solution will terminate as long as λ is a nonnegative even integer. If $\lambda=2 m$, then one or the other of the solutions in part (b) will contain at most $m / 2+1$ terms. In particular, we obtain the polynomial solutions corresponding to $\lambda=0,2,4,6,8,10$:

$\lambda=0$	$y_{1}(x)=1$
$\lambda=2$	$y_{2}(x)=x$
$\lambda=4$	$y_{1}(x)=1-2 x^{2}$
$\lambda=6$	$y_{2}(x)=x-2 x^{3} / 3$
$\lambda=8$	$y_{1}(x)=1-4 x^{2}+4 x^{4} / 3$
$\lambda=10$	$y_{2}(x)=x-4 x^{3} / 3+4 x^{5} / 15$

(c) Observe that if $\lambda=2 n$, and $a_{0}=a_{1}=1$, then

$$
a_{2 k}=(-1)^{k} \frac{2 n \ldots(2 n-4 k+8)(2 n-4 k+4)}{(2 k)!}
$$

and

$$
a_{2 k+1}=(-1)^{k} \frac{(2 n-2) \ldots(2 n-4 k+6)(2 n-4 k+2)}{(2 k+1)!} .
$$

for $k=1,2, \ldots[n / 2]$. It follows that the coefficient of x^{n}, in y_{1} and y_{2}, is

$$
a_{n}=\left\{\begin{array}{l}
(-1)^{k} \frac{4^{k} k!}{(2 k)!} \text { for } n=2 k \\
(-1)^{k} \frac{4^{k} k!}{(2 k+1)!} \text { for } n=2 k+1
\end{array}\right.
$$

Then by definition,

$$
H_{n}(x)=\left\{\begin{array}{l}
(-1)^{k} 2^{n} \frac{(2 k)!}{4 k k} y_{1}(x)=(-1)^{k} \frac{(2 k)!}{k!} y_{1}(x) \text { for } n=2 k \\
(-1)^{k} 2^{n} \frac{(2 k+1)!}{4^{k} k!} y_{2}(x)=(-1)^{k} \frac{2(2 k+1)!}{k!} y_{2}(x) \text { for } n=2 k+1
\end{array}\right.
$$

Therefore the first six Hermite polynomials are

$$
\begin{aligned}
& H_{0}(x)=1 \\
& H_{1}(x)=2 x \\
& H_{2}(x)=4 x^{2}-2 \\
& H_{3}(x)=8 x^{8}-12 x \\
& H_{4}(x)=16 x^{4}-48 x^{2}+12 \\
& H_{5}(x)=32 x^{5}-160 x^{3}+120 x
\end{aligned}
$$

24. The series solution is given by

$$
y(x)=1-x^{2}+\frac{x^{4}}{6}-\frac{x^{6}}{30}+\frac{x^{8}}{120}+\ldots .
$$

25. The series solution is given by

$$
y(x)=x-\frac{x^{3}}{2}+\frac{x^{5}}{2 \cdot 4}-\frac{x^{7}}{2 \cdot 4 \cdot 6}+\frac{x^{9}}{2 \cdot 4 \cdot 6 \cdot 8}-\ldots .
$$

27. The series solution is given by

$$
y(x)=1-\frac{x^{4}}{12}+\frac{x^{8}}{672}-\frac{x^{12}}{88704}+\ldots
$$

28. Let $y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$ Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
$$

and

$$
y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}
$$

Substitution into the ODE results in

$$
(1-x) \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+x \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}-2 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

After appropriately shifting the indices, it follows that

$$
2 a_{2}-2 a_{0}+\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}-(n+1) n a_{n+1}+n a_{n}-2 a_{n}\right] x^{n}=0
$$

We find that $a_{2}=a_{0}$ and

$$
(n+2)(n+1) a_{n+2}-(n+1) n a_{n+1}+(n-2) a_{n}=0
$$

for $n=1,2, \ldots$ Writing out the individual equations,

$$
\begin{array}{r}
3 \cdot 2 a_{3}-2 \cdot 1 a_{2}-a_{1}=0 \\
4 \cdot 3 a_{4}-3 \cdot 2 a_{3}=0 \\
5 \cdot 4 a_{5}-4 \cdot 3 a_{4}+a_{3}=0 \\
6 \cdot 5 a_{6}-5 \cdot 4 a_{5}+2 a_{4}=0
\end{array}
$$

Since $a_{0}=0$ and $a_{1}=1$, the remaining coefficients satisfy the equations

$$
\begin{array}{r}
3 \cdot 2 a_{3}-1=0 \\
4 \cdot 3 a_{4}-3 \cdot 2 a_{3}=0 \\
5 \cdot 4 a_{5}-4 \cdot 3 a_{4}+a_{3}=0 \\
6 \cdot 5 a_{6}-5 \cdot 4 a_{5}+2 a_{4}=0
\end{array}
$$

That is, $a_{3}=1 / 6, a_{4}=1 / 12, a_{5}=1 / 24, a_{6}=1 / 45, \ldots$ Hence the series solution of the initial value problem is

$$
y(x)=x+\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{24} x^{5}+\frac{1}{45} x^{6}+\frac{13}{1008} x^{7}+\ldots
$$

5.3
2. Let $y=\phi(x)$ be a solution of the initial value problem. First note that

$$
y^{\prime \prime}=-(\sin x) y^{\prime}-(\cos x) y
$$

Differentiating twice,

$$
\begin{aligned}
& y^{\prime \prime \prime}=-(\sin x) y^{\prime \prime}-2(\cos x) y^{\prime}+(\sin x) y \\
& y^{(4)}=-(\sin x) y^{\prime \prime \prime}-3(\cos x) y^{\prime \prime}+3(\sin x) y^{\prime}+(\cos x) y
\end{aligned}
$$

Given that $\phi(0)=0$ and $\phi^{\prime}(0)=1$, the first equation gives $\phi^{\prime \prime}(0)=0$ and the last two equations give $\phi^{\prime \prime \prime}(0)=-2$ and $\phi^{(4)}(0)=0$.
4. Let $y=\phi(x)$ be a solution of the initial value problem. First note that

$$
y^{\prime \prime}=-x^{2} y^{\prime}-(\sin x) y
$$

Differentiating twice,

$$
\begin{aligned}
& y^{\prime \prime \prime}=-x^{2} y^{\prime \prime}-(2 x+\sin x) y^{\prime}-(\cos x) y \\
& y^{(4)}=-x^{2} y^{\prime \prime \prime}-(4 x+\sin x) y^{\prime \prime}-(2+2 \cos x) y^{\prime}+(\sin x) y
\end{aligned}
$$

Given that $\phi(0)=a_{0}$ and $\phi^{\prime}(0)=a_{1}$, the first equation gives $\phi^{\prime \prime}(0)=0$ and the last two equations give $\phi^{\prime \prime \prime}(0)=-a_{0}$ and $\phi^{(4)}(0)=-4 a_{1}$.
5. Clearly, $p(x)=4$ and $q(x)=6 x$ are analytic for all x. Hence the series solutions converge everywhere.
8. The only root of $P(x)=x$ is zero. Hence $\rho_{\text {min }}=1$.
12. The Taylor series expansion of e^{x}, about $x_{0}=0$, is

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

Let $y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$ Substituting into the ODE,

$$
\left[\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right]\left[\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}\right]+x \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

First note that

$$
x \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=1}^{\infty} a_{n-1} x^{n}=a_{0} x+a_{1} x^{2}+a_{2} x^{3}+\ldots+a_{n-1} x^{n}+\ldots
$$

The coefficient of x^{n} in the product of the two series is

$$
\begin{aligned}
c_{n} & =2 a_{2} \frac{1}{n!}+6 a_{3} \frac{1}{(n-1)!}+12 a_{4} \frac{1}{(n-2)!}+\ldots \\
& \ldots+(n+1) n a_{n+1}+(n+2)(n+1) a_{n+2} .
\end{aligned}
$$

Expanding the individual series, it follows that

$$
\begin{gathered}
2 a_{2}+\left(2 a_{2}+6 a_{3}\right) x+\left(a_{2}+6 a_{3}+12 a_{4}\right) x^{2}+\left(a_{2}+6 a_{3}+12 a_{4}+20 a_{5}\right) x^{3}+\ldots \\
\ldots+a_{0} x+a_{1} x^{2}+a_{2} x^{3}+\ldots=0
\end{gathered}
$$

Setting the coefficients equal to zero, we obtain the system $2 a_{2}=0,2 a_{2}+6 a_{3}+$ $a_{0}=0, a_{2}+6 a_{3}+12 a_{4}+a_{1}=0, a_{2}+6 a_{3}+12 a_{4}+20 a_{5}+a_{2}=0, \ldots$ Hence the general solution is

$$
y(x)=a_{0}+a_{1} x-a_{0} \frac{x^{3}}{6}+\left(a_{0}-a_{1}\right) \frac{x^{4}}{12}+\left(2 a_{1}-a_{0}\right) \frac{x^{5}}{40}+\left(\frac{4}{3} a_{0}-2 a_{1}\right) \frac{x^{6}}{120}+\ldots
$$

We find that two linearly independent solutions $\left(W\left(y_{1}, y_{2}\right)(0)=1\right)$ are

$$
y_{1}(x)=1-\frac{x^{3}}{6}+\frac{x^{4}}{12}-\frac{x^{5}}{40}+\ldots
$$

$$
y_{2}(x)=x-\frac{x^{4}}{12}+\frac{x^{5}}{20}-\frac{x^{6}}{60}+\ldots
$$

Since $p(x)=0$ and $q(x)=x e^{-x}$ converge everywhere, $\rho=\infty$.
13. The Taylor series expansion of $\cos x$, about $x_{0}=0$, is

$$
\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} .
$$

Let $y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$ Substituting into the ODE,

$$
\left[\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}\right]\left[\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}\right]+\sum_{n=1}^{\infty} n a_{n} x^{n}-2 \sum_{n=0}^{\infty} a_{n} x^{n}=0 .
$$

The coefficient of x^{n} in the product of the two series is

$$
c_{n}=2 a_{2} b_{n}+6 a_{3} b_{n-1}+12 a_{4} b_{n-2}+\ldots+(n+1) n a_{n+1} b_{1}+(n+2)(n+1) a_{n+2} b_{0},
$$

in which $\cos x=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{n} x^{n}+\ldots$. It follows that

$$
2 a_{2}-2 a_{0}+\sum_{n=1}^{\infty} c_{n} x^{n}+\sum_{n=1}^{\infty}(n-2) a_{n} x^{n}=0 .
$$

Expanding the product of the series, it follows that

$$
\begin{aligned}
2 a_{2}-2 a_{0}+6 a_{3} x+ & \left(-a_{2}+12 a_{4}\right) x^{2}+\left(-3 a_{3}+20 a_{5}\right) x^{3}+\ldots \\
& \ldots-a_{1} x+a_{3} x^{3}+2 a_{4} x^{4}+\ldots=0
\end{aligned}
$$

Setting the coefficients equal to zero, $a_{2}-a_{0}=0,6 a_{3}-a_{1}=0,-a_{2}+12 a_{4}=0$, $-3 a_{3}+20 a_{5}+a_{3}=0, \ldots$. Hence the general solution is

$$
y(x)=a_{0}+a_{1} x+a_{0} x^{2}+a_{1} \frac{x^{3}}{6}+a_{0} \frac{x^{4}}{12}+a_{1} \frac{x^{5}}{60}+a_{0} \frac{x^{6}}{120}+a_{1} \frac{x^{7}}{560}+\ldots .
$$

We find that two linearly independent solutions $\left(W\left(y_{1}, y_{2}\right)(0)=1\right)$ are

$$
\begin{aligned}
& y_{1}(x)=1+x^{2}+\frac{x^{4}}{12}+\frac{x^{6}}{120}+\ldots \\
& y_{2}(x)=x+\frac{x^{3}}{6}+\frac{x^{5}}{60}+\frac{x^{7}}{560}+\ldots
\end{aligned}
$$

The nearest zero of $P(x)=\cos x$ is at $x= \pm \pi / 2$. Hence $\rho_{\text {min }}=\pi / 2$.
14. The Taylor series expansion of $\ln (1+x)$, about $x_{0}=0$, is

$$
\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}
$$

Let $y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$. Substituting into the ODE,

$$
\left[\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!}\right] \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}
$$

$$
+\left[\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}\right] \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}-x \sum_{n=0}^{\infty} a_{n} x^{n}=0 .
$$

The first product is the series

$$
2 a_{2}+\left(-2 a_{2}+6 a_{3}\right) x+\left(a_{2}-6 a_{3}+12 a_{4}\right) x^{2}+\left(-a_{2}+6 a_{3}-12 a_{4}+20 a_{5}\right) x^{3}+\ldots
$$

The second product is the series
$a_{1} x+\left(2 a_{2}-a_{1} / 2\right) x^{2}+\left(3 a_{3}-a_{2}+a_{1} / 3\right) x^{3}+\left(4 a_{4}-3 a_{3} / 2+2 a_{2} / 3-a_{1} / 4\right) x^{3}+\ldots$
Combining the series and equating the coefficients to zero, we obtain

$$
\begin{array}{r}
2 a_{2}=0 \\
-2 a_{2}+6 a_{3}+a_{1}-a_{0}=0 \\
12 a_{4}-6 a_{3}+3 a_{2}-3 a_{1} / 2=0 \\
20 a_{5}-12 a_{4}+9 a_{3}-3 a_{2}+a_{1} / 3=0
\end{array}
$$

Hence the general solution is

$$
y(x)=a_{0}+a_{1} x+\left(a_{0}-a_{1}\right) \frac{x^{3}}{6}+\left(2 a_{0}+a_{1}\right) \frac{x^{4}}{24}+a_{1} \frac{7 x^{5}}{120}+\left(\frac{5}{3} a_{1}-a_{0}\right) \frac{x^{6}}{120}+\ldots
$$

We find that two linearly independent solutions $\left(W\left(y_{1}, y_{2}\right)(0)=1\right)$ are

$$
\begin{aligned}
& y_{1}(x)=1+\frac{x^{3}}{6}+\frac{x^{4}}{12}-\frac{x^{6}}{120}+\ldots \\
& y_{2}(x)=x-\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{7 x^{5}}{120}+\ldots
\end{aligned}
$$

The coefficient $p(x)=e^{x} \ln (1+x)$ is analytic at $x_{0}=0$, but its power series has a radius of convergence $\rho=1$.
15. If $y_{1}=x$ and $y_{2}=x^{2}$ are solutions, then substituting y_{2} into the ODE results in

$$
2 P(x)+2 x Q(x)+x^{2} R(x)=0 .
$$

Setting $x=0$, we find that $P(0)=0$. Similarly, substituting y_{1} into the ODE results in $Q(0)=0$. Therefore $P(x) / Q(x)$ and $R(x) / P(x)$ may not be analytic. If they were, Theorem 3.2.1 would guarantee that y_{1} and y_{2} were the only two solutions. But note that an arbitrary value of $y(0)$ cannot be a linear combination of $y_{1}(0)$ and $y_{2}(0)$. Hence $x_{0}=0$ must be a singular point.
16. Let $y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$. Substituting into the ODE,

$$
\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n}=0 .
$$

That is,

$$
\sum_{n=0}^{\infty}\left[(n+1) a_{n+1}-a_{n}\right] x^{n}=0 .
$$

Setting the coefficients equal to zero, we obtain

$$
a_{n+1}=\frac{a_{n}}{n+1}
$$

for $n=0,1,2, \ldots$. It is easy to see that $a_{n}=a_{0} /(n!)$. Therefore the general solution is

$$
y(x)=a_{0}\left[1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots\right]=a_{0} e^{x}
$$

The coefficient $a_{0}=y(0)$, which can be arbitrary.
17. Let $y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$ Substituting into the ODE,

$$
\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}-x \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

That is,

$$
\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}-\sum_{n=1}^{\infty} a_{n-1} x^{n}=0
$$

Combining the series, we have

$$
a_{1}+\sum_{n=1}^{\infty}\left[(n+1) a_{n+1}-a_{n-1}\right] x^{n}=0
$$

Setting the coefficient equal to zero, $a_{1}=0$ and $a_{n+1}=a_{n-1} /(n+1)$ for $n=1,2, \ldots$. Note that the indices differ by two, so for $k=1,2, \ldots$

$$
a_{2 k}=\frac{a_{2 k-2}}{(2 k)}=\frac{a_{2 k-4}}{(2 k-2)(2 k)}=\ldots=\frac{a_{0}}{2 \cdot 4 \ldots(2 k)}
$$

and

$$
a_{2 k+1}=0
$$

Hence the general solution is

$$
y(x)=a_{0}\left[1+\frac{x^{2}}{2}+\frac{x^{4}}{2^{2} 2!}+\frac{x^{6}}{2^{3} 3!}+\ldots+\frac{x^{2 n}}{2^{n} n!}+\ldots\right]=a_{0} e^{x^{2} / 2}
$$

The coefficient $a_{0}=y(0)$, which can be arbitrary.
19. Let $y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$ Substituting into the ODE,

$$
(1-x) \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

That is,

$$
\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}-\sum_{n=1}^{\infty} n a_{n} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Combining the series, we have

$$
a_{1}-a_{0}+\sum_{n=1}^{\infty}\left[(n+1) a_{n+1}-n a_{n}-a_{n}\right] x^{n}=0
$$

Setting the coefficients equal to zero, $a_{1}=a_{0}$ and $a_{n+1}=a_{n}$ for $n=0,1,2, \ldots$. Hence the general solution is

$$
y(x)=a_{0}\left[1+x+x^{2}+x^{3}+\ldots+x^{n}+\ldots\right]=a_{0} \frac{1}{1-x} .
$$

The coefficient $a_{0}=y(0)$, which can be arbitrary.
21. Let $y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$ Substituting into the ODE,

$$
\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}+x \sum_{n=0}^{\infty} a_{n} x^{n}=1+x
$$

That is,

$$
\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}+\sum_{n=1}^{\infty} a_{n-1} x^{n}=1+x
$$

Combining the series, and the nonhomogeneous terms, we have

$$
\left(a_{1}-1\right)+\left(2 a_{2}+a_{0}-1\right) x+\sum_{n=2}^{\infty}\left[(n+1) a_{n+1}+a_{n-1}\right] x^{n}=0
$$

Setting the coefficients equal to zero, we obtain $a_{1}=1,2 a_{2}+a_{0}-1=0$, and

$$
a_{n}=-\frac{a_{n-2}}{n}, \quad n=3,4, \ldots
$$

The indices differ by two, so for $k=2,3, \ldots$

$$
a_{2 k}=-\frac{a_{2 k-2}}{(2 k)}=\frac{a_{2 k-4}}{(2 k-2)(2 k)}=\ldots=\frac{(-1)^{k-1} a_{2}}{4 \cdot 6 \ldots(2 k)}=\frac{(-1)^{k}\left(a_{0}-1\right)}{2 \cdot 4 \cdot 6 \ldots(2 k)}
$$

and for $k=1,2, \ldots$

$$
a_{2 k+1}=-\frac{a_{2 k-1}}{(2 k+1)}=\frac{a_{2 k-3}}{(2 k-1)(2 k+1)}=\ldots=\frac{(-1)^{k}}{3 \cdot 5 \ldots(2 k+1)}
$$

Hence the general solution is

$$
y(x)=a_{0}+x+\frac{1-a_{0}}{2} x^{2}-\frac{x^{3}}{3}+a_{0} \frac{x^{4}}{2^{2} 2!}+\frac{x^{5}}{3 \cdot 5}-a_{0} \frac{x^{6}}{2^{3} 3!}-\ldots
$$

Collecting the terms containing a_{0},
$y(x)=a_{0}\left[1-\frac{x^{2}}{2}+\frac{x^{4}}{2^{2} 2!}-\frac{x^{6}}{2^{3} 3!}+\ldots\right]$

$$
+\left[x+\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{2^{2} 2!}+\frac{x^{5}}{3 \cdot 5}+\frac{x^{6}}{2^{3} 3!}-\frac{x^{7}}{3 \cdot 5 \cdot 7}+\ldots\right]
$$

Upon inspection, we find that

$$
y(x)=a_{0} e^{-x^{2} / 2}+\left[x+\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{2^{2} 2!}+\frac{x^{5}}{3 \cdot 5}+\frac{x^{6}}{2^{3} 3!}-\frac{x^{7}}{3 \cdot 5 \cdot 7}+\ldots\right] .
$$

Note that the given ODE is first order linear, with integrating factor $\mu(x)=e^{x^{2} / 2}$. The general solution is given by

$$
y(x)=e^{-x^{2} / 2} \int_{0}^{x} e^{u^{2} / 2} d u+(y(0)-1) e^{-x^{2} / 2}+1
$$

23. If $\alpha=0$, then $y_{1}(x)=1$. If $\alpha=2 n$, then $a_{2 m}=0$ for $m \geq n+1$. As a result, $y_{1}(x)=1$

$$
+\sum_{m=1}^{n}(-1)^{m} \frac{2^{m} n(n-1) \ldots(n-m+1)(2 n+1)(2 n+3) \ldots(2 n+2 m-1)}{(2 m)!} x^{2 m}
$$

$$
\begin{array}{|l|l|}
\hline \alpha=0 & 1 \\
\hline \alpha=2 & 1-3 x^{2} \\
\hline \alpha=4 & 1-10 x^{2}+\frac{35}{3} x^{4} \\
\hline
\end{array}
$$

If $\alpha=2 n+1$, then $a_{2 m+1}=0$ for $m \geq n+1$. As a result,
$y_{2}(x)=x$

$$
+\sum_{m=1}^{n}(-1)^{m} \frac{2^{m} n(n-1) \ldots(n-m+1)(2 n+3)(2 n+5) \ldots(2 n+2 m+1)}{(2 m+1)!} x^{2 m+1}
$$

$\alpha=1$	x
$\alpha=3$	$x-\frac{5}{3} x^{3}$
$\alpha=5$	$x-\frac{14}{3} x^{3}+\frac{21}{5} x^{5}$

24.(a) Based on Problem 23,

$\alpha=0$	1	$y_{1}(1)=1$
$\alpha=2$	$1-3 x^{2}$	$y_{1}(1)=-2$
$\alpha=4$	$1-10 x^{2}+\frac{35}{3} x^{4}$	$y_{1}(1)=\frac{8}{3}$

Normalizing the polynomials, we obtain

Similarly,

$$
\begin{aligned}
& P_{1}(x)=x \\
& P_{3}(x)=-\frac{3}{2} x+\frac{5}{2} x^{3} \\
& P_{5}(x)=\frac{15}{8} x-\frac{35}{4} x^{3}+\frac{63}{8} x^{5}
\end{aligned}
$$

$$
\begin{aligned}
& P_{0}(x)=1 \\
& P_{2}(x)=-\frac{1}{2}+\frac{3}{2} x^{2} \\
& P_{4}(x)=\frac{3}{8}-\frac{15}{4} x^{2}+\frac{35}{8} x^{4}
\end{aligned}
$$

(b)

(c) $P_{0}(x)$ has no roots. $P_{1}(x)$ has one root at $x=0$. The zeros of $P_{2}(x)$ are at $x= \pm 1 / \sqrt{3}$. The zeros of $P_{3}(x)$ are $x=0, \pm \sqrt{3 / 5}$. The roots of $P_{4}(x)$ are given by $x^{2}=(15+2 \sqrt{30}) / 35,(15-2 \sqrt{30}) / 35$. The roots of $P_{5}(x)$ are given by $x=0$ and $x^{2}=(35+2 \sqrt{70}) / 63,(35-2 \sqrt{70}) / 63$.
25. Observe that

$$
P_{n}(-1)=\frac{(-1)^{n}}{2^{n}} \sum_{k=0}^{[n / 2]} \frac{(-1)^{k}(2 n-2 k)!}{k!(n-k)!(n-2 k)!}=(-1)^{n} P_{n}(1) .
$$

But $P_{n}(1)=1$ for all nonnegative integers n.
27. We have

$$
\left(x^{2}-1\right)^{n}=\sum_{k=0}^{n} \frac{(-1)^{n-k} n!}{k!(n-k)!} x^{2 k},
$$

which is a polynomial of degree $2 n$. Differentiating n times,

$$
\frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}=\sum_{k=\mu}^{n} \frac{(-1)^{n-k} n!}{k!(n-k)!}(2 k)(2 k-1) \ldots(2 k-n+1) x^{2 k-n},
$$

in which the lower index is $\mu=[n / 2]+1$. Note that if $n=2 m+1$, then $\mu=m+1$. Now shift the index, by setting $k=n-j$. Hence

$$
\begin{aligned}
\frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} & =\sum_{j=0}^{[n / 2]} \frac{(-1)^{j} n!}{(n-j)!j!}(2 n-2 j)(2 n-2 j-1) \ldots(n-2 j+1) x^{n-2 j} \\
& =n!\sum_{j=0}^{[n / 2]} \frac{(-1)^{j}(2 n-2 j)!}{(n-j)!j!(n-2 j)!} x^{n-2 j} .
\end{aligned}
$$

Based on Problem 25,

$$
\frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}=n!2^{n} P_{n}(x) .
$$

29. Since the $n+1$ polynomials $P_{0}, P_{1}, \ldots, P_{n}$ are linearly independent, and the degree of P_{k} is k, any polynomial f of degree n can be expressed as a linear combination

$$
f(x)=\sum_{k=0}^{n} a_{k} P_{k}(x)
$$

Multiplying both sides by P_{m} and integrating,

$$
\int_{-1}^{1} f(x) P_{m}(x) d x=\sum_{k=0}^{n} a_{k} \int_{-1}^{1} P_{k}(x) P_{m}(x) d x
$$

Based on Problem 28,

$$
\int_{-1}^{1} P_{k}(x) P_{m}(x) d x=\frac{2}{2 m+1} \delta_{k m}
$$

Hence

$$
\int_{-1}^{1} f(x) P_{m}(x) d x=\frac{2}{2 m+1} a_{m}
$$

5.4

1. Substitution of $y=x^{r}$ results in the quadratic equation $F(r)=0$, where $F(r)=$ $r(r-1)+4 r+2=r^{2}+3 r+2$. The roots are $r=-2,-1$. Hence the general solution, for $x \neq 0$, is $y=c_{1} x^{-2}+c_{2} x^{-1}$.
2. Substitution of $y=x^{r}$ results in the quadratic equation $F(r)=0$, where $F(r)=$ $r(r-1)-3 r+4=r^{2}-4 r+4$. The root is $r=2$, with multiplicity two. Hence the general solution, for $x \neq 0$, is $y=\left(c_{1}+c_{2} \ln |x|\right) x^{2}$.
3. Substitution of $y=x^{r}$ results in the quadratic equation $F(r)=0$, where $F(r)=$ $r(r-1)-r+1=r^{2}-2 r+1$. The root is $r=1$, with multiplicity two. Hence the general solution, for $x \neq 0$, is $y=\left(c_{1}+c_{2} \ln |x|\right) x$.
4. Substitution of $y=(x-1)^{r}$ results in the quadratic equation $F(r)=0$, where $F(r)=r^{2}+7 r+12$. The roots are $r=-3,-4$. Hence the general solution, for $x \neq 1$, is $y=c_{1}(x-1)^{-3}+c_{2}(x-1)^{-4}$.
5. Substitution of $y=x^{r}$ results in the quadratic equation $F(r)=0$, where $F(r)=$ $r^{2}+5 r-1$. The roots are $r=-(5 \pm \sqrt{29}) / 2$. Hence the general solution, for $x \neq 0$, is $y=c_{1}|x|^{-(5+\sqrt{29}) / 2}+c_{2}|x|^{-(5-\sqrt{29}) / 2}$.
6. Substitution of $y=x^{r}$ results in the quadratic equation $F(r)=0$, where $F(r)=$ $r^{2}-3 r+3$. The roots are complex, with $r=(3 \pm i \sqrt{3}) / 2$. Hence the general solution, for $x \neq 0$, is

$$
y=c_{1}|x|^{3 / 2} \cos \left(\frac{\sqrt{3}}{2} \ln |x|\right)+c_{2}|x|^{3 / 2} \sin \left(\frac{\sqrt{3}}{2} \ln |x|\right)
$$

10. Substitution of $y=(x-2)^{r}$ results in the quadratic equation $F(r)=0$, where $F(r)=r^{2}+4 r+8$. The roots are complex, with $r=-2 \pm 2 i$. Hence the general solution, for $x \neq 2$, is $y=c_{1}(x-2)^{-2} \cos (2 \ln |x-2|)+c_{2}(x-2)^{-2} \sin (2 \ln |x-2|)$.
11. Substitution of $y=x^{r}$ results in the quadratic equation $F(r)=0$, where $F(r)=r^{2}+r+4$. The roots are complex, with $r=-(1 \pm i \sqrt{15}) / 2$. Hence the general solution, for $x \neq 0$, is

$$
y=c_{1}|x|^{-1 / 2} \cos \left(\frac{\sqrt{15}}{2} \ln |x|\right)+c_{2}|x|^{-1 / 2} \sin \left(\frac{\sqrt{15}}{2} \ln |x|\right)
$$

12. Substitution of $y=x^{r}$ results in the quadratic equation $F(r)=0$, where $F(r)=r^{2}-5 r+4$. The roots are $r=1,4$. Hence the general solution is $y=$ $c_{1} x+c_{2} x^{4}$.
13. Substitution of $y=x^{r}$ results in the quadratic equation $F(r)=0$, where $F(r)=4 r^{2}+4 r+17$. The roots are complex, with $r=-1 / 2 \pm 2 i$. Hence the general solution, for $x>0$, is $y=c_{1} x^{-1 / 2} \cos (2 \ln x)+c_{2} x^{-1 / 2} \sin (2 \ln x)$. Invoking the initial conditions, we obtain the system of equations

$$
c_{1}=2, \quad-\frac{1}{2} c_{1}+2 c_{2}=-3 .
$$

Hence the solution of the initial value problem is

$$
y(x)=2 x^{-1 / 2} \cos (2 \ln x)-x^{-1 / 2} \sin (2 \ln x)
$$

As $x \rightarrow 0^{+}$, the solution decreases without bound.
15. Substitution of $y=x^{r}$ results in the quadratic equation $F(r)=0$, where $F(r)=r^{2}-4 r+4$. The root is $r=2$, with multiplicity two. Hence the general solution, for $x<0$, is $y=\left(c_{1}+c_{2} \ln |x|\right) x^{2}$. Invoking the initial conditions, we obtain the system of equations

$$
c_{1}=2, \quad-2 c_{1}-c_{2}=3
$$

Hence the solution of the initial value problem is

$$
y(x)=(2-7 \ln |x|) x^{2} .
$$

We find that $y(x) \rightarrow 0$ as $x \rightarrow 0^{-}$.
18. We see that $P(x)=0$ when $x=0$ and 1 . Since the three coefficients have no factors in common, both of these points are singular points. Near $x=0$,

$$
\begin{aligned}
\lim _{x \rightarrow 0} x p(x) & =\lim _{x \rightarrow 0} x \frac{2 x}{x^{2}(1-x)^{2}}=2 \\
\lim _{x \rightarrow 0} x^{2} q(x) & =\lim _{x \rightarrow 0} x^{2} \frac{4}{x^{2}(1-x)^{2}}=4
\end{aligned}
$$

The singular point $x=0$ is regular. Considering $x=1$,

$$
\lim _{x \rightarrow 1}(x-1) p(x)=\lim _{x \rightarrow 1}(x-1) \frac{2 x}{x^{2}(1-x)^{2}}
$$

The latter limit does not exist. Hence $x=1$ is an irregular singular point.
19. $P(x)=0$ when $x=0$ and 1 . Since the three coefficients have no common factors, both of these points are singular points. Near $x=0$,

$$
\lim _{x \rightarrow 0} x p(x)=\lim _{x \rightarrow 0} x \frac{x-2}{x^{2}(1-x)}
$$

The limit does not exist, and so $x=0$ is an irregular singular point. Considering $x=1$,

$$
\begin{aligned}
\lim _{x \rightarrow 1}(x-1) p(x) & =\lim _{x \rightarrow 1}(x-1) \frac{x-2}{x^{2}(1-x)}=1 \\
\lim _{x \rightarrow 1}(x-1)^{2} q(x) & =\lim _{x \rightarrow 1}(x-1)^{2} \frac{-3 x}{x^{2}(1-x)}=0
\end{aligned}
$$

Hence $x=1$ is a regular singular point.
20. $P(x)=0$ when $x=0$ and ± 1. Since the three coefficients have no common factors, both of these points are singular points. Near $x=0$,

$$
\lim _{x \rightarrow 0} x p(x)=\lim _{x \rightarrow 0} x \frac{2}{x^{3}\left(1-x^{2}\right)}
$$

The limit does not exist, and so $x=0$ is an irregular singular point. Near $x=-1$,

$$
\lim _{x \rightarrow-1}(x+1) p(x)=\lim _{x \rightarrow-1}(x+1) \frac{2}{x^{3}\left(1-x^{2}\right)}=-1
$$

$$
\lim _{x \rightarrow-1}(x+1)^{2} q(x)=\lim _{x \rightarrow-1}(x+1)^{2} \frac{2}{x^{3}\left(1-x^{2}\right)}=0
$$

Hence $x=-1$ is a regular singular point. At $x=1$,

$$
\begin{aligned}
& \lim _{x \rightarrow 1}(x-1) p(x)=\lim _{x \rightarrow 1}(x-1) \frac{2}{x^{3}\left(1-x^{2}\right)}=-1 . \\
& \lim _{x \rightarrow 1}(x-1)^{2} q(x)=\lim _{x \rightarrow 1}(x-1)^{2} \frac{2}{x^{3}\left(1-x^{2}\right)}=0 .
\end{aligned}
$$

Hence $x=1$ is a regular singular point.
22. The only singular point is at $x=0$. We find that

$$
\begin{gathered}
\lim _{x \rightarrow 0} x p(x)=\lim _{x \rightarrow 0} x \frac{x}{x^{2}}=1 . \\
\lim _{x \rightarrow 0} x^{2} q(x)=\lim _{x \rightarrow 0} x^{2} \frac{x^{2}-\nu^{2}}{x^{2}}=-\nu^{2} .
\end{gathered}
$$

Hence $x=0$ is a regular singular point.
23. The only singular point is at $x=-3$. We find that

$$
\begin{aligned}
\lim _{x \rightarrow-3}(x+3) p(x) & =\lim _{x \rightarrow-3}(x+3) \frac{-2 x}{x+3}=6 . \\
\lim _{x \rightarrow-3}(x+3)^{2} q(x) & =\lim _{x \rightarrow-3}(x+3)^{2} \frac{1-x^{2}}{x+3}=0 .
\end{aligned}
$$

Hence $x=-3$ is a regular singular point.
24. Dividing the ODE by $x\left(1-x^{2}\right)^{3}$, we find that

$$
p(x)=\frac{1}{x\left(1-x^{2}\right)} \quad \text { and } \quad q(x)=\frac{2}{x(1+x)^{2}(1-x)^{3}} .
$$

The singular points are at $x=0$ and ± 1. For $x=0$,

$$
\begin{gathered}
\lim _{x \rightarrow 0} x p(x)=\lim _{x \rightarrow 0} x \frac{1}{x\left(1-x^{2}\right)}=1 . \\
\lim _{x \rightarrow 0} x^{2} q(x)=\lim _{x \rightarrow 0} x^{2} \frac{2}{x(1+x)^{2}(1-x)^{3}}=0 .
\end{gathered}
$$

Hence $x=0$ is a regular singular point. For $x=-1$,

$$
\begin{gathered}
\lim _{x \rightarrow-1}(x+1) p(x)=\lim _{x \rightarrow-1}(x+1) \frac{1}{x\left(1-x^{2}\right)}=-\frac{1}{2} . \\
\lim _{x \rightarrow-1}(x+1)^{2} q(x)=\lim _{x \rightarrow-1}(x+1)^{2} \frac{2}{x(1+x)^{2}(1-x)^{3}}=-\frac{1}{4} .
\end{gathered}
$$

Hence $x=-1$ is a regular singular point. For $x=1$,

$$
\lim _{x \rightarrow 1}(x-1) p(x)=\lim _{x \rightarrow 1}(x-1) \frac{1}{x\left(1-x^{2}\right)}=-\frac{1}{2} .
$$

$$
\lim _{x \rightarrow 1}(x-1)^{2} q(x)=\lim _{x \rightarrow 1}(x-1)^{2} \frac{2}{x(1+x)^{2}(1-x)^{3}} .
$$

The latter limit does not exist. Hence $x=1$ is an irregular singular point.
25. Dividing the ODE by $(x+2)^{2}(x-1)$, we find that

$$
p(x)=\frac{3}{(x+2)^{2}} \quad \text { and } \quad q(x)=\frac{-2}{(x+2)(x-1)} .
$$

The singular points are at $x=-2$ and 1 . For $x=-2$,

$$
\lim _{x \rightarrow-2}(x+2) p(x)=\lim _{x \rightarrow-2}(x+2) \frac{3}{(x+2)^{2}} .
$$

The limit does not exist. Hence $x=-2$ is an irregular singular point. For $x=1$,

$$
\begin{gathered}
\lim _{x \rightarrow 1}(x-1) p(x)=\lim _{x \rightarrow 1}(x-1) \frac{3}{(x+2)^{2}}=0 . \\
\lim _{x \rightarrow 1}(x-1)^{2} q(x)=\lim _{x \rightarrow 1}(x-1)^{2} \frac{-2}{(x+2)(x-1)}=0 .
\end{gathered}
$$

Hence $x=1$ is a regular singular point.
26. $P(x)=0$ when $x=0$ and 3 . Since the three coefficients have no common factors, both of these points are singular points. Near $x=0$,

$$
\begin{aligned}
& \lim _{x \rightarrow 0} x p(x)=\lim _{x \rightarrow 0} x \frac{x+1}{x(3-x)}=\frac{1}{3} . \\
& \lim _{x \rightarrow 0} x^{2} q(x)=\lim _{x \rightarrow 0} x^{2} \frac{-2}{x(3-x)}=0 .
\end{aligned}
$$

Hence $x=0$ is a regular singular point. For $x=3$,

$$
\begin{aligned}
& \lim _{x \rightarrow 3}(x-3) p(x)=\lim _{x \rightarrow 3}(x-3) \frac{x+1}{x(3-x)}=-\frac{4}{3} . \\
& \lim _{x \rightarrow 3}(x-3)^{2} q(x)=\lim _{x \rightarrow 3}(x-3)^{2} \frac{-2}{x(3-x)}=0 .
\end{aligned}
$$

Hence $x=3$ is a regular singular point.
27. Dividing the ODE by $\left(x^{2}+x-2\right)$, we find that

$$
p(x)=\frac{x+1}{(x+2)(x-1)} \quad \text { and } \quad q(x)=\frac{2}{(x+2)(x-1)} .
$$

The singular points are at $x=-2$ and 1 . For $x=-2$,

$$
\begin{gathered}
\lim _{x \rightarrow-2}(x+2) p(x)=\lim _{x \rightarrow-2} \frac{x+1}{x-1}=\frac{1}{3} \\
\lim _{x \rightarrow-2}(x+2)^{2} q(x)=\lim _{x \rightarrow-2} \frac{2(x+2)}{x-1}=0 .
\end{gathered}
$$

Hence $x=-2$ is a regular singular point. For $x=1$,

$$
\begin{gathered}
\lim _{x \rightarrow 1}(x-1) p(x)=\lim _{x \rightarrow 1} \frac{x+1}{x+2}=\frac{2}{3} \\
\lim _{x \rightarrow 1}(x-1)^{2} q(x)=\lim _{x \rightarrow 1} \frac{2(x-1)}{(x+2)}=0 .
\end{gathered}
$$

Hence $x=1$ is a regular singular point.
29. Note that $p(x)=\ln |x|$ and $q(x)=3 x$. Evidently, $p(x)$ is not analytic at $x_{0}=0$. Furthermore, the function $x p(x)=x \ln |x|$ does not have a Taylor series about $x_{0}=0$. Hence $x=0$ is an irregular singular point.
30. $P(x)=0$ when $x=0$. Since the three coefficients have no common factors, $x=0$ is a singular point. The Taylor series of $e^{x}-1$, about $x=0$, is

$$
e^{x}-1=x+x^{2} / 2+x^{3} / 6+\ldots
$$

Hence the function $x p(x)=2\left(e^{x}-1\right) / x$ is analytic at $x=0$. Similarly, the Taylor series of $e^{-x} \cos x$, about $x=0$, is

$$
e^{-x} \cos x=1-x+x^{3} / 3-x^{4} / 6+\ldots
$$

The function $x^{2} q(x)=e^{-x} \cos x$ is also analytic at $x=0$. Hence $x=0$ is a regular singular point.
31. $P(x)=0$ when $x=0$. Since the three coefficients have no common factors, $x=0$ is a singular point. The Taylor series of $\sin x$, about $x=0$, is

$$
\sin x=x-x^{3} / 3!+x^{5} / 5!-\ldots
$$

Hence the function $x p(x)=-3 \sin x / x$ is analytic at $x=0$. On the other hand, $q(x)$ is a rational function, with

$$
\lim _{x \rightarrow 0} x^{2} q(x)=\lim _{x \rightarrow 0} x^{2} \frac{1+x^{2}}{x^{2}}=1
$$

Hence $x=0$ is a regular singular point.
32. $P(x)=0$ when $x=0$. Since the three coefficients have no common factors, $x=0$ is a singular point. We find that

$$
\lim _{x \rightarrow 0} x p(x)=\lim _{x \rightarrow 0} x \frac{1}{x}=1
$$

Although the function $R(x)=\cot x$ does not have a Taylor series about $x=0$, note that $x^{2} q(x)=x \cot x=1-x^{2} / 3-x^{4} / 45-2 x^{6} / 945-\ldots$. Hence $x=0$ is a regular singular point. Furthermore, $q(x)=\cot x / x^{2}$ is undefined at $x= \pm n \pi$. Therefore the points $x= \pm n \pi$ are also singular points. First note that

$$
\lim _{x \rightarrow \pm n \pi}(x \mp n \pi) p(x)=\lim _{x \rightarrow \pm n \pi}(x \mp n \pi) \frac{1}{x}=0
$$

Furthermore, since cot x has period π,

$$
q(x)=\cot x / x=\cot (x \mp n \pi) / x=\cot (x \mp n \pi) \frac{1}{(x \mp n \pi) \pm n \pi} .
$$

Therefore

$$
(x \mp n \pi)^{2} q(x)=(x \mp n \pi) \cot (x \mp n \pi)\left[\frac{(x \mp n \pi)}{(x \mp n \pi) \pm n \pi}\right] .
$$

From above,

$$
(x \mp n \pi) \cot (x \mp n \pi)=1-(x \mp n \pi)^{2} / 3-(x \mp n \pi)^{4} / 45-\ldots .
$$

Note that the function in brackets is analytic near $x= \pm n \pi$. It follows that the function $(x \mp n \pi)^{2} q(x)$ is also analytic near $x= \pm n \pi$. Hence all the singular points are regular.
34. The singular points are located at $x= \pm n \pi, n=0,1, \ldots$. Dividing the ODE by $x \sin x$, we find that $x p(x)=3 \csc x$ and $x^{2} q(x)=x^{2} \csc x$. Evidently, $x p(x)$ is not even defined at $x=0$. Hence $x=0$ is an irregular singular point. On the other hand, the Taylor series of $x \csc x$, about $x=0$, is

$$
x \csc x=1+x^{2} / 6+7 x^{4} 360+\ldots .
$$

Noting that $\csc (x \mp n \pi)=(-1)^{n} \csc x$,

$$
\begin{aligned}
(x \mp n \pi) p(x) & =3(-1)^{n}(x \mp n \pi) \csc (x \mp n \pi) / x \\
& =3(-1)^{n}(x \mp n \pi) \csc (x \mp n \pi)\left[\frac{1}{(x \mp n \pi) \pm n \pi}\right] .
\end{aligned}
$$

It is apparent that $(x \mp n \pi) p(x)$ is analytic at $x= \pm n \pi$. Similarly,

$$
(x \mp n \pi)^{2} q(x)=(x \mp n \pi)^{2} \csc x=(-1)^{n}(x \mp n \pi)^{2} \csc (x \mp n \pi) \text {, }
$$

which is also analytic at $x= \pm n \pi$. Hence all other singular points are regular.
36. Substitution of $y=x^{r}$ results in the quadratic equation $r^{2}-r+\beta=0$. The roots are

$$
r=\frac{1 \pm \sqrt{1-4 \beta}}{2} .
$$

If $\beta>1 / 4$, the roots are complex, with $r_{1,2}=(1 \pm i \sqrt{4 \beta-1}) / 2$. Hence the general solution, for $x \neq 0$, is

$$
y=c_{1}|x|^{1 / 2} \cos \left(\frac{1}{2} \sqrt{4 \beta-1} \ln |x|\right)+c_{2}|x|^{1 / 2} \sin \left(\frac{1}{2} \sqrt{4 \beta-1} \ln |x|\right) .
$$

Since the trigonometric factors are bounded, $y(x) \rightarrow 0$ as $x \rightarrow 0$. If $\beta=1 / 4$, the roots are equal, and

$$
y=c_{1}|x|^{1 / 2}+c_{2}|x|^{1 / 2} \ln |x| .
$$

Since $\lim _{x \rightarrow 0} \sqrt{|x|} \ln |x|=0, y(x) \rightarrow 0$ as $x \rightarrow 0$. If $\beta<1 / 4$, the roots are real, with $r_{1,2}=(1 \pm \sqrt{1-4 \beta}) / 2$. Hence the general solution, for $x \neq 0$, is

$$
y=c_{1}|x|^{1 / 2+\sqrt{1-4 \beta} / 2}+c_{2}|x|^{1 / 2-\sqrt{1-4 \beta} / 2} .
$$

Evidently, solutions approach zero as long as $1 / 2-\sqrt{1-4 \beta} / 2>0$. That is,

$$
0<\beta<1 / 4
$$

Hence all solutions approach zero for $\beta>0$.
37. Substitution of $y=x^{r}$ results in the quadratic equation $r^{2}-r-2=0$. The roots are $r=-1,2$. Hence the general solution, for $x \neq 0$, is $y=c_{1} x^{-1}+c_{2} x^{2}$. Invoking the initial conditions, we obtain the system of equations

$$
c_{1}+c_{2}=1, \quad-c_{1}+2 c_{2}=\gamma
$$

Hence the solution of the initial value problem is

$$
y(x)=\frac{2-\gamma}{3} x^{-1}+\frac{1+\gamma}{3} x^{2}
$$

The solution is bounded, as $x \rightarrow 0$, if $\gamma=2$.
38. Substitution of $y=x^{r}$ results in the quadratic equation $r^{2}+(\alpha-1) r+5 / 2=$ 0 . Formally, the roots are given by

$$
r=\frac{1-\alpha \pm \sqrt{\alpha^{2}-2 \alpha-9}}{2}=\frac{1-\alpha \pm \sqrt{(\alpha-1-\sqrt{10})(\alpha-1+\sqrt{10})}}{2} .
$$

(i) The roots will be complex if $|1-\alpha|<\sqrt{10}$. For solutions to approach zero, as $x \rightarrow \infty$, we need $-\sqrt{10}<1-\alpha<0$.
(ii) The roots will be equal if $|1-\alpha|=\sqrt{10}$. In this case, all solutions approach zero as long as $1-\alpha=-\sqrt{10}$.
(iii) The roots will be real and distinct if $|1-\alpha|>\sqrt{10}$. It follows that

$$
r_{\max }=\frac{1-\alpha+\sqrt{\alpha^{2}-2 \alpha-9}}{2}
$$

For solutions to approach zero, we need $1-\alpha+\sqrt{\alpha^{2}-2 \alpha-9}<0$. That is, $1-\alpha<-\sqrt{10}$. Hence all solutions approach zero, as $x \rightarrow \infty$, as long as $\alpha>1$.
42. $x=0$ is the only singular point. Dividing the ODE by $2 x^{2}$, we have $p(x)=$ $3 /(2 x)$ and $q(x)=-x^{-2}(1+x) / 2$. It follows that

$$
\begin{gathered}
\lim _{x \rightarrow 0} x p(x)=\lim _{x \rightarrow 0} x \frac{3}{2 x}=\frac{3}{2} \\
\lim _{x \rightarrow 0} x^{2} q(x)=\lim _{x \rightarrow 0} x^{2} \frac{-(1+x)}{2 x^{2}}=-\frac{1}{2}
\end{gathered}
$$

so $x=0$ is a regular singular point. Let $y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$. Substitution into the ODE results in

$$
2 x^{2} \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+3 x \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}-(1+x) \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

That is,

$$
2 \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}+3 \sum_{n=1}^{\infty} n a_{n} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n}-\sum_{n=1}^{\infty} a_{n-1} x^{n}=0
$$

It follows that

$$
-a_{0}+\left(2 a_{1}-a_{0}\right) x+\sum_{n=2}^{\infty}\left[2 n(n-1) a_{n}+3 n a_{n}-a_{n}-a_{n-1}\right] x^{n}=0
$$

Equating the coefficients to zero, we find that $a_{0}=0,2 a_{1}-a_{0}=0$, and

$$
(2 n-1)(n+1) a_{n}=a_{n-1}, \quad n=2,3, \ldots
$$

We conclude that all the a_{n} are equal to zero. Hence $y(x)=0$ is the only solution that can be obtained.
44. Based on Problem 43, the change of variable, $x=1 / \xi$, transforms the ODE into the form

$$
\xi^{4} \frac{d^{2} y}{d \xi^{2}}+2 \xi^{3} \frac{d y}{d \xi}+y=0
$$

Evidently, $\xi=0$ is a singular point. Now $p(\xi)=2 / \xi$ and $q(\xi)=1 / \xi^{4}$. Since the value of $\lim _{\xi \rightarrow 0} \xi^{2} q(\xi)$ does not exist, $\xi=0(x=\infty)$ is an irregular singular point.
46. Under the transformation $x=1 / \xi$, the ODE becomes

$$
\xi^{4}\left(1-\frac{1}{\xi^{2}}\right) \frac{d^{2} y}{d \xi^{2}}+\left[2 \xi^{3}\left(1-\frac{1}{\xi^{2}}\right)+2 \xi^{2} \frac{1}{\xi}\right] \frac{d y}{d \xi}+\alpha(\alpha+1) y=0
$$

that is,

$$
\left(\xi^{4}-\xi^{2}\right) \frac{d^{2} y}{d \xi^{2}}+2 \xi^{3} \frac{d y}{d \xi}+\alpha(\alpha+1) y=0
$$

Therefore $\xi=0$ is a singular point. Note that

$$
p(\xi)=\frac{2 \xi}{\xi^{2}-1} \text { and } q(\xi)=\frac{\alpha(\alpha+1)}{\xi^{2}\left(\xi^{2}-1\right)}
$$

It follows that

$$
\begin{gathered}
\lim _{\xi \rightarrow 0} \xi p(\xi)=\lim _{\xi \rightarrow 0} \xi \frac{2 \xi}{\xi^{2}-1}=0 \\
\lim _{\xi \rightarrow 0} \xi^{2} q(\xi)=\lim _{\xi \rightarrow 0} \xi^{2} \frac{\alpha(\alpha+1)}{\xi^{2}\left(\xi^{2}-1\right)}=-\alpha(\alpha+1)
\end{gathered}
$$

Hence $\xi=0 \quad(x=\infty)$ is a regular singular point.
48. Under the transformation $x=1 / \xi$, the ODE becomes

$$
\xi^{4} \frac{d^{2} y}{d \xi^{2}}+\left[2 \xi^{3}+2 \xi^{2} \frac{1}{\xi}\right] \frac{d y}{d \xi}+\lambda y=0
$$

that is,

$$
\xi^{4} \frac{d^{2} y}{d \xi^{2}}+2\left(\xi^{3}+\xi\right) \frac{d y}{d \xi}+\lambda y=0
$$

Therefore $\xi=0$ is a singular point. Note that

$$
p(\xi)=\frac{2\left(\xi^{2}+1\right)}{\xi^{3}} \text { and } q(\xi)=\frac{\lambda}{\xi^{4}}
$$

It immediately follows that the $\operatorname{limit} \lim _{\xi \rightarrow 0} \xi p(\xi)$ does not exist. Hence $\xi=0$ $(x=\infty)$ is an irregular singular point.
49. Under the transformation $x=1 / \xi$, the ODE becomes

$$
\xi^{4} \frac{d^{2} y}{d \xi^{2}}+2 \xi^{3} \frac{d y}{d \xi}-\frac{1}{\xi} y=0
$$

Therefore $\xi=0$ is a singular point. Note that

$$
p(\xi)=\frac{2}{\xi} \text { and } q(\xi)=\frac{-1}{\xi^{5}}
$$

We find that

$$
\lim _{\xi \rightarrow 0} \xi p(\xi)=\lim _{\xi \rightarrow 0} \xi \frac{2}{\xi}=2
$$

but

$$
\lim _{\xi \rightarrow 0} \xi^{2} q(\xi)=\lim _{\xi \rightarrow 0} \xi^{2} \frac{(-1)}{\xi^{5}}
$$

The latter limit does not exist. Hence $\xi=0(x=\infty)$ is an irregular singular point.
1.(a) $P(x)=0$ when $x=0$. Since the three coefficients have no common factors, $x=0$ is a singular point. Near $x=0$,

$$
\begin{aligned}
& \lim _{x \rightarrow 0} x p(x)=\lim _{x \rightarrow 0} x \frac{1}{2 x}=\frac{1}{2} \\
& \lim _{x \rightarrow 0} x^{2} q(x)=\lim _{x \rightarrow 0} x^{2} \frac{1}{2}=0
\end{aligned}
$$

Hence $x=0$ is a regular singular point.
(b) Let

$$
y=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots\right)=\sum_{n=0}^{\infty} a_{n} x^{r+n}
$$

Then

$$
y^{\prime}=\sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n-1}
$$

and

$$
y^{\prime \prime}=\sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n-2}
$$

Substitution into the ODE results in
$2 \sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n-1}+\sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n-1}+\sum_{n=0}^{\infty} a_{n} x^{r+n+1}=0$.
That is,

$$
2 \sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n}+\sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n}+\sum_{n=2}^{\infty} a_{n-2} x^{r+n}=0 .
$$

It follows that

$$
\begin{aligned}
& a_{0}[2 r(r-1)+r] x^{r}+a_{1}[2(r+1) r+r+1] x^{r+1} \\
& \quad+\sum_{n=2}^{\infty}\left[2(r+n)(r+n-1) a_{n}+(r+n) a_{n}+a_{n-2}\right] x^{r+n}=0 .
\end{aligned}
$$

Assuming that $a_{0} \neq 0$, we obtain the indicial equation $2 r^{2}-r=0$, with roots $r_{1}=1 / 2$ and $r_{2}=0$. It immediately follows that $a_{1}=0$. Setting the remaining coefficients equal to zero, we have

$$
a_{n}=\frac{-a_{n-2}}{(r+n)[2(r+n)-1]}, \quad n=2,3, \ldots .
$$

(c) For $r=1 / 2$, the recurrence relation becomes

$$
a_{n}=\frac{-a_{n-2}}{n(1+2 n)}, \quad n=2,3, \ldots
$$

Since $a_{1}=0$, the odd coefficients are zero. Furthermore, for $k=1,2, \ldots$,

$$
a_{2 k}=\frac{-a_{2 k-2}}{2 k(1+4 k)}=\frac{a_{2 k-4}}{(2 k-2)(2 k)(4 k-3)(4 k+1)}=\frac{(-1)^{k} a_{0}}{2^{k} k!5 \cdot 9 \cdot 13 \ldots(4 k+1)} .
$$

(d) For $r=0$, the recurrence relation becomes

$$
a_{n}=\frac{-a_{n-2}}{n(2 n-1)}, \quad n=2,3, \ldots .
$$

Since $a_{1}=0$, the odd coefficients are zero, and for $k=1,2, \ldots$,

$$
a_{2 k}=\frac{-a_{2 k-2}}{2 k(4 k-1)}=\frac{a_{2 k-4}}{(2 k-2)(2 k)(4 k-5)(4 k-1)}=\frac{(-1)^{k} a_{0}}{2^{k} k!3 \cdot 7 \cdot 11 \ldots(4 k-1)} .
$$

The two linearly independent solutions are

$$
\begin{gathered}
y_{1}(x)=\sqrt{x}\left[1+\sum_{k=1}^{\infty} \frac{(-1)^{k} x^{2 k}}{2^{k} k!5 \cdot 9 \cdot 13 \ldots(4 k+1)}\right] \\
y_{2}(x)=1+\sum_{k=1}^{\infty} \frac{(-1)^{k} x^{2 k}}{2^{k} k!3 \cdot 7 \cdot 11 \ldots(4 k-1)}
\end{gathered}
$$

3.(a) Note that $x p(x)=0$ and $x^{2} q(x)=x$, which are both analytic at $x=0$.
(b) Set $y=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots\right)$. Substitution into the ODE results in

$$
\sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n-1}+\sum_{n=0}^{\infty} a_{n} x^{r+n}=0
$$

and after multiplying both sides of the equation by x,

$$
\sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n}+\sum_{n=1}^{\infty} a_{n-1} x^{r+n}=0
$$

It follows that

$$
a_{0}[r(r-1)] x^{r}+\sum_{n=1}^{\infty}\left[(r+n)(r+n-1) a_{n}+a_{n-1}\right] x^{r+n}=0
$$

Setting the coefficients equal to zero, the indicial equation is $r(r-1)=0$. The roots are $r_{1}=1$ and $r_{2}=0$. Here $r_{1}-r_{2}=1$. The recurrence relation is

$$
a_{n}=\frac{-a_{n-1}}{(r+n)(r+n-1)}, \quad n=1,2, \ldots
$$

(c) For $r=1$,

$$
a_{n}=\frac{-a_{n-1}}{n(n+1)}, \quad n=1,2, \ldots
$$

Hence for $n \geq 1$,

$$
a_{n}=\frac{-a_{n-1}}{n(n+1)}=\frac{a_{n-2}}{(n-1) n^{2}(n+1)}=\ldots=\frac{(-1)^{n} a_{0}}{n!(n+1)!}
$$

Therefore one solution is

$$
y_{1}(x)=x \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!(n+1)!}
$$

5.(a) Here $x p(x)=2 / 3$ and $x^{2} q(x)=x^{2} / 3$, which are both analytic at $x=0$.
(b) Set $y=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots\right)$. Substitution into the ODE results in

$$
3 \sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n}+2 \sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n}+\sum_{n=0}^{\infty} a_{n} x^{r+n+2}=0 .
$$

It follows that

$$
\begin{aligned}
& a_{0}[3 r(r-1)+2 r] x^{r}+a_{1}[3(r+1) r+2(r+1)] x^{r+1} \\
& \quad+\sum_{n=2}^{\infty}\left[3(r+n)(r+n-1) a_{n}+2(r+n) a_{n}+a_{n-2}\right] x^{r+n}=0
\end{aligned}
$$

Assuming $a_{0} \neq 0$, the indicial equation is $3 r^{2}-r=0$, with roots $r_{1}=1 / 3, r_{2}=0$. Setting the remaining coefficients equal to zero, we have $a_{1}=0$, and

$$
a_{n}=\frac{-a_{n-2}}{(r+n)[3(r+n)-1]}, \quad n=2,3, \ldots
$$

It immediately follows that the odd coefficients are equal to zero.
(c) For $r=1 / 3$,

$$
a_{n}=\frac{-a_{n-2}}{n(1+3 n)}, \quad n=2,3, \ldots
$$

So for $k=1,2, \ldots$,

$$
a_{2 k}=\frac{-a_{2 k-2}}{2 k(6 k+1)}=\frac{a_{2 k-4}}{(2 k-2)(2 k)(6 k-5)(6 k+1)}=\frac{(-1)^{k} a_{0}}{2^{k} k!7 \cdot 13 \ldots(6 k+1)} .
$$

(d) For $r=0$,

$$
a_{n}=\frac{-a_{n-2}}{n(3 n-1)}, \quad n=2,3, \ldots
$$

So for $k=1,2, \ldots$,

$$
a_{2 k}=\frac{-a_{2 k-2}}{2 k(6 k-1)}=\frac{a_{2 k-4}}{(2 k-2)(2 k)(6 k-7)(6 k-1)}=\frac{(-1)^{k} a_{0}}{2^{k} k!5 \cdot 11 \ldots(6 k-1)} .
$$

The two linearly independent solutions are

$$
\begin{gathered}
y_{1}(x)=x^{1 / 3}\left[1+\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k!7 \cdot 13 \ldots(6 k+1)}\left(\frac{x^{2}}{2}\right)^{k}\right] \\
y_{2}(x)=1+\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k!5 \cdot 11 \ldots(6 k-1)}\left(\frac{x^{2}}{2}\right)^{k} .
\end{gathered}
$$

6.(a) Note that $x p(x)=1$ and $x^{2} q(x)=x-2$, which are both analytic at $x=0$.
(b) Set $y=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots\right)$. Substitution into the ODE results in

$$
\begin{aligned}
\sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n}+ & \sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n} \\
& +\sum_{n=0}^{\infty} a_{n} x^{r+n+1}-2 \sum_{n=0}^{\infty} a_{n} x^{r+n}=0
\end{aligned}
$$

After adjusting the indices in the second-to-last series, we obtain
$a_{0}[r(r-1)+r-2] x^{r}$

$$
+\sum_{n=1}^{\infty}\left[(r+n)(r+n-1) a_{n}+(r+n) a_{n}-2 a_{n}+a_{n-1}\right] x^{r+n}=0
$$

Assuming $a_{0} \neq 0$, the indicial equation is $r^{2}-2=0$, with roots $r= \pm \sqrt{2}$. Setting the remaining coefficients equal to zero, the recurrence relation is

$$
a_{n}=\frac{-a_{n-1}}{(r+n)^{2}-2}, \quad n=1,2, \ldots
$$

Note that $(r+n)^{2}-2=(r+n+\sqrt{2})(r+n-\sqrt{2})$.
(c) For $r=\sqrt{2}$,

$$
a_{n}=\frac{-a_{n-1}}{n(n+2 \sqrt{2})}, \quad n=1,2, \ldots
$$

It follows that

$$
a_{n}=\frac{(-1)^{n} a_{0}}{n!(1+2 \sqrt{2})(2+2 \sqrt{2}) \ldots(n+2 \sqrt{2})}, \quad n=1,2, \ldots
$$

(d) For $r=-\sqrt{2}$,

$$
a_{n}=\frac{-a_{n-1}}{n(n-2 \sqrt{2})}, \quad n=1,2, \ldots
$$

and therefore

$$
a_{n}=\frac{(-1)^{n} a_{0}}{n!(1-2 \sqrt{2})(2-2 \sqrt{2}) \ldots(n-2 \sqrt{2})}, \quad n=1,2, \ldots
$$

The two linearly independent solutions are

$$
\begin{aligned}
y_{1}(x) & =x^{\sqrt{2}}\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n!(1+2 \sqrt{2})(2+2 \sqrt{2}) \ldots(n+2 \sqrt{2})}\right] \\
y_{2}(x) & =x^{-\sqrt{2}}\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n!(1-2 \sqrt{2})(2-2 \sqrt{2}) \ldots(n-2 \sqrt{2})}\right]
\end{aligned}
$$

7.(a) Here $x p(x)=1-x$ and $x^{2} q(x)=-x$, which are both analytic at $x=0$.
(b) Set $y=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots\right)$. Substitution into the ODE results in

$$
\begin{aligned}
\sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n-1}+ & \sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n-1} \\
& -\sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n}-\sum_{n=0}^{\infty} a_{n} x^{r+n}=0 .
\end{aligned}
$$

After multiplying both sides by x,

$$
\begin{aligned}
\sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n}+ & \sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n} \\
& -\sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n+1}-\sum_{n=0}^{\infty} a_{n} x^{r+n+1}=0
\end{aligned}
$$

After adjusting the indices in the last two series, we obtain

$$
\begin{aligned}
& a_{0}[r(r-1)+r] x^{r} \\
& \quad+\sum_{n=1}^{\infty}\left[(r+n)(r+n-1) a_{n}+(r+n) a_{n}-(r+n) a_{n-1}\right] x^{r+n}=0 .
\end{aligned}
$$

Assuming $a_{0} \neq 0$, the indicial equation is $r^{2}=0$, with roots $r_{1}=r_{2}=0$. Setting the remaining coefficients equal to zero, the recurrence relation is

$$
a_{n}=\frac{a_{n-1}}{r+n}, \quad n=1,2, \ldots
$$

(c) With $r=0$,

$$
a_{n}=\frac{a_{n-1}}{n}, \quad n=1,2, \ldots
$$

Hence one solution is

$$
y_{1}(x)=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!}+\ldots=e^{x}
$$

8. (a) Note that $x p(x)=3 / 2$ and $x^{2} q(x)=x^{2}-1 / 2$, which are both analytic at $x=0$.
(b) Set $y=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots\right)$. Substitution into the ODE results in

$$
\begin{aligned}
2 \sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n}+ & 3 \sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n} \\
& +2 \sum_{n=0}^{\infty} a_{n} x^{r+n+2}-\sum_{n=0}^{\infty} a_{n} x^{r+n}=0
\end{aligned}
$$

After adjusting the indices in the second-to-last series, we obtain
$a_{0}[2 r(r-1)+3 r-1] x^{r}+a_{1}[2(r+1) r+3(r+1)-1]$

$$
+\sum_{n=2}^{\infty}\left[2(r+n)(r+n-1) a_{n}+3(r+n) a_{n}-a_{n}+2 a_{n-2}\right] x^{r+n}=0
$$

Assuming $a_{0} \neq 0$, the indicial equation is $2 r^{2}+r-1=0$, with roots $r_{1}=1 / 2$ and $r_{2}=-1$. Setting the remaining coefficients equal to zero, the recurrence relation is

$$
a_{n}=\frac{-2 a_{n-2}}{(r+n+1)[2(r+n)-1]}, \quad n=2,3, \ldots
$$

Setting the remaining coefficients equal to zero, we have $a_{1}=0$, which implies that all of the odd coefficients are zero.
(c) With $r=1 / 2$,

$$
a_{n}=\frac{-2 a_{n-2}}{n(2 n+3)}, \quad n=2,3, \ldots
$$

So for $k=1,2, \ldots$,

$$
a_{2 k}=\frac{-a_{2 k-2}}{k(4 k+3)}=\frac{a_{2 k-4}}{(k-1) k(4 k-5)(4 k+3)}=\frac{(-1)^{k} a_{0}}{k!7 \cdot 11 \ldots(4 k+3)} .
$$

(d) With $r=-1$,

$$
a_{n}=\frac{-2 a_{n-2}}{n(2 n-3)}, \quad n=2,3, \ldots
$$

So for $k=1,2, \ldots$,

$$
a_{2 k}=\frac{-a_{2 k-2}}{k(4 k-3)}=\frac{a_{2 k-4}}{(k-1) k(4 k-11)(4 k-3)}=\frac{(-1)^{k} a_{0}}{k!5 \cdot 9 \ldots(4 k-3)} .
$$

The two linearly independent solutions are

$$
\begin{aligned}
& y_{1}(x)=x^{1 / 2}\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!7 \cdot 11 \ldots(4 n+3)}\right] \\
& y_{2}(x)=x^{-1}\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!5 \cdot 9 \ldots(4 n-3)}\right] .
\end{aligned}
$$

9.(a) Note that $x p(x)=-x-3$ and $x^{2} q(x)=x+3$, which are both analytic at $x=0$.
(b) Set $y=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots\right)$. Substitution into the ODE results in

$$
\begin{aligned}
\sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n}- & \sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n+1}-3 \sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n} \\
& +\sum_{n=0}^{\infty} a_{n} x^{r+n+1}+3 \sum_{n=0}^{\infty} a_{n} x^{r+n}=0 .
\end{aligned}
$$

After adjusting the indices in the second-to-last series, we obtain
$a_{0}[r(r-1)-3 r+3] x^{r}$

$$
+\sum_{n=1}^{\infty}\left[(r+n)(r+n-1) a_{n}-(r+n-2) a_{n-1}-3(r+n-1) a_{n}\right] x^{r+n}=0 .
$$

Assuming $a_{0} \neq 0$, the indicial equation is $r^{2}-4 r+3=0$, with roots $r_{1}=3$ and $r_{2}=1$. Setting the remaining coefficients equal to zero, the recurrence relation is

$$
a_{n}=\frac{(r+n-2) a_{n-1}}{(r+n-1)(r+n-3)}, \quad n=1,2, \ldots .
$$

(c) With $r=3$,

$$
a_{n}=\frac{(n+1) a_{n-1}}{n(n+2)}, \quad n=1,2, \ldots .
$$

It follows that for $n \geq 1$,

$$
a_{n}=\frac{(n+1) a_{n-1}}{n(n+2)}=\frac{a_{n-2}}{(n-1)(n+2)}=\ldots=\frac{2 a_{0}}{n!(n+2)} .
$$

Therefore one solution is

$$
y_{1}(x)=x^{3}\left[1+\sum_{n=1}^{\infty} \frac{2 x^{n}}{n!(n+2)}\right] .
$$

10.(a) Here $x p(x)=0$ and $x^{2} q(x)=x^{2}+1 / 4$, which are both analytic at $x=0$.
(b) Set $y=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots\right)$. Substitution into the ODE results in

$$
\sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n}+\sum_{n=0}^{\infty} a_{n} x^{r+n+2}+\frac{1}{4} \sum_{n=0}^{\infty} a_{n} x^{r+n}=0
$$

After adjusting the indices in the second series, we obtain

$$
\begin{aligned}
a_{0}\left[r(r-1)+\frac{1}{4}\right] x^{r} & +a_{1}\left[(r+1) r+\frac{1}{4}\right] x^{r+1} \\
& +\sum_{n=2}^{\infty}\left[(r+n)(r+n-1) a_{n}+\frac{1}{4} a_{n}+a_{n-2}\right] x^{r+n}=0
\end{aligned}
$$

Assuming $a_{0} \neq 0$, the indicial equation is $r^{2}-r+\frac{1}{4}=0$, with roots $r_{1}=r_{2}=1 / 2$. Setting the remaining coefficients equal to zero, we find that $a_{1}=0$. The recurrence relation is

$$
a_{n}=\frac{-4 a_{n-2}}{(2 r+2 n-1)^{2}}, \quad n=2,3, \ldots
$$

(c) With $r=1 / 2$,

$$
a_{n}=\frac{-a_{n-2}}{n^{2}}, \quad n=2,3, \ldots
$$

Since $a_{1}=0$, the odd coefficients are zero. So for $k \geq 1$,

$$
a_{2 k}=\frac{-a_{2 k-2}}{4 k^{2}}=\frac{a_{2 k-4}}{4^{2}(k-1)^{2} k^{2}}=\ldots=\frac{(-1)^{k} a_{0}}{4^{k}(k!)^{2}}
$$

Therefore one solution is

$$
y_{1}(x)=\sqrt{x}\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n}(n!)^{2}}\right]
$$

12.(a) Dividing through by the leading coefficient, the ODE can be written as

$$
y^{\prime \prime}-\frac{x}{1-x^{2}} y^{\prime}+\frac{\alpha^{2}}{1-x^{2}} y=0
$$

For $x=1$,

$$
\begin{gathered}
p_{0}=\lim _{x \rightarrow 1}(x-1) p(x)=\lim _{x \rightarrow 1} \frac{x}{x+1}=\frac{1}{2} \\
q_{0}=\lim _{x \rightarrow 1}(x-1)^{2} q(x)=\lim _{x \rightarrow 1} \frac{\alpha^{2}(1-x)}{x+1}=0
\end{gathered}
$$

For $x=-1$,

$$
\begin{gathered}
p_{0}=\lim _{x \rightarrow-1}(x+1) p(x)=\lim _{x \rightarrow-1} \frac{x}{x-1}=\frac{1}{2} \\
q_{0}=\lim _{x \rightarrow-1}(x+1)^{2} q(x)=\lim _{x \rightarrow-1} \frac{\alpha^{2}(x+1)}{(1-x)}=0
\end{gathered}
$$

Hence $x=-1$ and $x=1$ are regular singular points. As shown in Example 1, the indicial equation is given by

$$
r(r-1)+p_{0} r+q_{0}=0
$$

In this case, both sets of roots are $r_{1}=1 / 2$ and $r_{2}=0$.
(b) Let $t=x-1$, and $u(t)=y(t+1)$. Under this change of variable, the differential equation becomes

$$
\left(t^{2}+2 t\right) u^{\prime \prime}+(t+1) u^{\prime}-\alpha^{2} u=0 .
$$

Based on part (a), $t=0$ is a regular singular point. Set $u=\sum_{n=0}^{\infty} a_{n} t^{r+n}$. Substitution into the ODE results in

$$
\begin{aligned}
& \sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} t^{r+n}+2 \sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} t^{r+n-1} \\
& \quad+\sum_{n=0}^{\infty}(r+n) a_{n} t^{r+n}+\sum_{n=0}^{\infty}(r+n) a_{n} t^{r+n-1}-\alpha^{2} \sum_{n=0}^{\infty} a_{n} t^{r+n}=0 .
\end{aligned}
$$

Upon inspection, we can also write

$$
\sum_{n=0}^{\infty}(r+n)^{2} a_{n} t^{r+n}+2 \sum_{n=0}^{\infty}(r+n)\left(r+n-\frac{1}{2}\right) a_{n} t^{r+n-1}-\alpha^{2} \sum_{n=0}^{\infty} a_{n} t^{t+n}=0 .
$$

After adjusting the indices in the second series, it follows that
$a_{0}\left[2 r\left(r-\frac{1}{2}\right)\right] t^{r-1}$

$$
+\sum_{n=0}^{\infty}\left[(r+n)^{2} a_{n}+2(r+n+1)\left(r+n+\frac{1}{2}\right) a_{n+1}-\alpha^{2} a_{n}\right] t^{r+n}=0
$$

Assuming that $a_{0} \neq 0$, the indicial equation is $2 r^{2}-r=0$, with roots $r=0,1 / 2$. The recurrence relation is

$$
(r+n)^{2} a_{n}+2(r+n+1)\left(r+n+\frac{1}{2}\right) a_{n+1}-\alpha^{2} a_{n}=0, \quad n=0,1,2, \ldots .
$$

With $r_{1}=1 / 2$, we find that for $n \geq 1$,

$$
a_{n}=\frac{4 \alpha^{2}-(2 n-1)^{2}}{4 n(2 n+1)} a_{n-1}=(-1)^{n} \frac{\left[1-4 \alpha^{2}\right]\left[9-4 \alpha^{2}\right] \ldots\left[(2 n-1)^{2}-4 \alpha^{2}\right]}{2^{n}(2 n+1)!} a_{0} .
$$

With $r_{2}=0$, we find that for $n \geq 1$,

$$
a_{n}=\frac{\alpha^{2}-(n-1)^{2}}{n(2 n-1)} a_{n-1}=(-1)^{n} \frac{\alpha(-\alpha)\left[1-\alpha^{2}\right]\left[4-\alpha^{2}\right] \ldots\left[(n-1)^{2}-\alpha^{2}\right]}{n!\cdot 3 \cdot 5 \ldots(2 n-1)} a_{0} .
$$

The two linearly independent solutions of the Chebyshev equation are

$$
\begin{gathered}
y_{1}(x)=|x-1|^{1 / 2}\left(1+\sum_{n=1}^{\infty}(-1)^{n} \frac{\left(1-4 \alpha^{2}\right)\left(9-4 \alpha^{2}\right) \ldots\left((2 n-1)^{2}-4 \alpha^{2}\right)}{2^{n}(2 n+1)!}(x-1)^{n}\right) \\
y_{2}(x)=1+\sum_{n=1}^{\infty}(-1)^{n} \frac{\alpha(-\alpha)\left(1-\alpha^{2}\right)\left(4-\alpha^{2}\right) \ldots\left((n-1)^{2}-\alpha^{2}\right)}{n!\cdot 3 \cdot 5 \ldots(2 n-1)}(x-1)^{n} .
\end{gathered}
$$

13.(a) Here $x p(x)=1-x$ and $x^{2} q(x)=\lambda x$, which are both analytic at $x=0$. In fact,

$$
p_{0}=\lim _{x \rightarrow 0} x p(x)=1 \text { and } q_{0}=\lim _{x \rightarrow 0} x^{2} q(x)=0
$$

(b) The indicial equation is $r(r-1)+r=0$, with roots $r_{1,2}=0$.
(c) Set

$$
y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots
$$

Substitution into the ODE results in

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-1}+\sum_{n=1}^{\infty} n a_{n} x^{n-1}-\sum_{n=0}^{\infty} n a_{n} x^{n}+\lambda \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

That is,

$$
\sum_{n=1}^{\infty} n(n+1) a_{n+1} x^{n}+\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}-\sum_{n=1}^{\infty} n a_{n} x^{n}+\lambda \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

It follows that

$$
a_{1}+\lambda a_{0}+\sum_{n=1}^{\infty}\left[(n+1)^{2} a_{n+1}-(n-\lambda) a_{n}\right] x^{n}=0
$$

Setting the coefficients equal to zero, we find that $a_{1}=-\lambda a_{0}$, and

$$
a_{n}=\frac{(n-1-\lambda)}{n^{2}} a_{n-1}, \quad n=2,3, \ldots
$$

That is, for $n \geq 2$,

$$
a_{n}=\frac{(n-1-\lambda)}{n^{2}} a_{n-1}=\ldots=\frac{(-\lambda)(1-\lambda) \ldots(n-1-\lambda)}{(n!)^{2}} a_{0}
$$

Therefore one solution of the Laguerre equation is

$$
y_{1}(x)=1+\sum_{n=1}^{\infty} \frac{(-\lambda)(1-\lambda) \ldots(n-1-\lambda)}{(n!)^{2}} x^{n}
$$

Note that if $\lambda=m$, a positive integer, then $a_{n}=0$ for $n \geq m+1$. In that case, the solution is a polynomial

$$
y_{1}(x)=1+\sum_{n=1}^{m} \frac{(-\lambda)(1-\lambda) \ldots(n-1-\lambda)}{(n!)^{2}} x^{n}
$$

5.6

2.(a) $P(x)=0$ only for $x=0$. Furthermore, $x p(x)=-2-x$ and $x^{2} q(x)=2+x^{2}$. It follows that

$$
\begin{aligned}
p_{0} & =\lim _{x \rightarrow 0}(-2-x)=-2 \\
q_{0} & =\lim _{x \rightarrow 0}\left(2+x^{2}\right)=2
\end{aligned}
$$

and therefore $x=0$ is a regular singular point.
(b) The indicial equation is given by $r(r-1)-2 r+2=0$, that is, $r^{2}-3 r+2=0$, with roots $r_{1}=2$ and $r_{2}=1$.
4. The coefficients $P(x), Q(x)$, and $R(x)$ are analytic for all $x \in \mathbb{R}$. Hence there are no singular points.
5.(a) $P(x)=0$ only for $x=0$. Furthermore, $x p(x)=3 \sin x / x$ and $x^{2} q(x)=-2$. It follows that

$$
\begin{aligned}
& p_{0}=\lim _{x \rightarrow 0} 3 \frac{\sin x}{x}=3 \\
& q_{0}=\lim _{x \rightarrow 0}-2=-2
\end{aligned}
$$

and therefore $x=0$ is a regular singular point.
(b) The indicial equation is given by $r(r-1)+3 r-2=0$, that is, $r^{2}+2 r-2=0$, with roots $r_{1}=-1+\sqrt{3}$ and $r_{2}=-1-\sqrt{3}$.
6.(a) $P(x)=0$ for $x=0$ and $x=-2$. We note that $p(x)=x^{-1}(x+2)^{-1} / 2$, and $q(x)=-(x+2)^{-1} / 2$. For the singularity at $x=0$,

$$
\begin{aligned}
p_{0} & =\lim _{x \rightarrow 0} \frac{1}{2(x+2)}=\frac{1}{4} \\
q_{0} & =\lim _{x \rightarrow 0} \frac{-x^{2}}{2(x+2)}=0
\end{aligned}
$$

and therefore $x=0$ is a regular singular point.
For the singularity at $x=-2$,

$$
\begin{aligned}
& p_{0}=\lim _{x \rightarrow-2}(x+2) p(x)=\lim _{x \rightarrow-2} \frac{1}{2 x}=-\frac{1}{4} \\
& q_{0}=\lim _{x \rightarrow-2}(x+2)^{2} q(x)=\lim _{x \rightarrow-2} \frac{-(x+2)}{2}=0
\end{aligned}
$$

and therefore $x=-2$ is a regular singular point.
(b) For $x=0$: the indicial equation is given by $r(r-1)+r / 4=0$, that is, $r^{2}-$ $3 r / 4=0$, with roots $r_{1}=3 / 4$ and $r_{2}=0$.
For $x=-2$: the indicial equation is given by $r(r-1)-r / 4=0$, that is, $r^{2}-$ $5 r / 4=0$, with roots $r_{1}=5 / 4$ and $r_{2}=0$.
7.(a) $P(x)=0$ only for $x=0$. Furthermore, $x p(x)=1 / 2+\sin x / 2 x$ and $x^{2} q(x)=$ 1. It follows that

$$
\begin{aligned}
p_{0} & =\lim _{x \rightarrow 0} x p(x)=1 \\
q_{0} & =\lim _{x \rightarrow 0} x^{2} q(x)=1
\end{aligned}
$$

and therefore $x=0$ is a regular singular point.
(b) The indicial equation is given by

$$
r(r-1)+r+1=0
$$

that is, $r^{2}+1=0$, with complex conjugate roots $r= \pm i$.
8.(a) Note that $P(x)=0$ only for $x=-1$. We find that $p(x)=3(x-1) /(x+1)$, and $q(x)=3 /(x+1)^{2}$. It follows that

$$
\begin{aligned}
p_{0} & =\lim _{x \rightarrow-1}(x+1) p(x)=\lim _{x \rightarrow-1} 3(x-1)=-6 \\
q_{0} & =\lim _{x \rightarrow-1}(x+1)^{2} q(x)=\lim _{x \rightarrow-1} 3=3
\end{aligned}
$$

and therefore $x=-1$ is a regular singular point.
(b) The indicial equation is given by

$$
r(r-1)-6 r+3=0
$$

that is, $r^{2}-7 r+3=0$, with roots $r_{1}=(7+\sqrt{37}) / 2$ and $r_{2}=(7-\sqrt{37}) / 2$.
10.(a) $P(x)=0$ for $x=2$ and $x=-2$. We note that $p(x)=2 x(x-2)^{-2}(x+2)^{-1}$, and $q(x)=3(x-2)^{-1}(x+2)^{-1}$. For the singularity at $x=2$,

$$
\lim _{x \rightarrow 2}(x-2) p(x)=\lim _{x \rightarrow 2} \frac{2 x}{x^{2}-4}
$$

which is undefined. Therefore $x=2$ is an irregular singular point. For the singularity at $x=-2$,

$$
\begin{aligned}
& p_{0}=\lim _{x \rightarrow-2}(x+2) p(x)=\lim _{x \rightarrow-2} \frac{2 x}{(x-2)^{2}}=-\frac{1}{4} \\
& q_{0}=\lim _{x \rightarrow-2}(x+2)^{2} q(x)=\lim _{x \rightarrow-2} \frac{3(x+2)}{x-2}=0
\end{aligned}
$$

and therefore $x=-2$ is a regular singular point.
(b) The indicial equation is given by $r(r-1)-r / 4=0$, that is, $r^{2}-5 r / 4=0$, with roots $r_{1}=5 / 4$ and $r_{2}=0$.
11.(a) $P(x)=0$ for $x=2$ and $x=-2$. We note that $p(x)=2 x /\left(4-x^{2}\right)$, and $q(x)=3 /\left(4-x^{2}\right)$. For the singularity at $x=2$,

$$
\begin{aligned}
& p_{0}=\lim _{x \rightarrow 2}(x-2) p(x)=\lim _{x \rightarrow 2} \frac{-2 x}{x+2}=-1 \\
& q_{0}=\lim _{x \rightarrow 2}(x-2)^{2} q(x)=\lim _{x \rightarrow 2} \frac{3(2-x)}{x+2}=0
\end{aligned}
$$

and therefore $x=2$ is a regular singular point.
For the singularity at $x=-2$,

$$
\begin{aligned}
& p_{0}=\lim _{x \rightarrow-2}(x+2) p(x)=\lim _{x \rightarrow-2} \frac{2 x}{2-x}=-1 \\
& q_{0}=\lim _{x \rightarrow-2}(x+2)^{2} q(x)=\lim _{x \rightarrow-2} \frac{3(x+2)}{2-x}=0
\end{aligned}
$$

and therefore $x=-2$ is a regular singular point.
(b) For $x=2$: the indicial equation is given by $r(r-1)-r=0$, that is, $r^{2}-2 r=$ 0 , with roots $r_{1}=2$ and $r_{2}=0$.

For $x=-2$: the indicial equation is given by $r(r-1)-r=0$, that is, $r^{2}-2 r=$ 0 , with roots $r_{1}=2$ and $r_{2}=0$.
12.(a) $P(x)=0$ for $x=0$ and $x=-3$. We note that $p(x)=-2 x^{-1}(x+3)^{-1}$, and $q(x)=-1 /(x+3)^{2}$. For the singularity at $x=0$,

$$
\begin{aligned}
& p_{0}=\lim _{x \rightarrow 0} x p(x)=\lim _{x \rightarrow 0} \frac{-2}{x+3}=-\frac{2}{3} \\
& q_{0}=\lim _{x \rightarrow 0} x^{2} q(x)=\lim _{x \rightarrow 0} \frac{-x^{2}}{(x+3)^{2}}=0
\end{aligned}
$$

and therefore $x=0$ is a regular singular point.
For the singularity at $x=-3$,

$$
\begin{aligned}
& p_{0}=\lim _{x \rightarrow-3}(x+3) p(x)=\lim _{x \rightarrow-3} \frac{-2}{x}=\frac{2}{3} \\
& q_{0}=\lim _{x \rightarrow-3}(x+3)^{2} q(x)=\lim _{x \rightarrow-3}(-1)=-1
\end{aligned}
$$

and therefore $x=-3$ is a regular singular point.
(b) For $x=0$: the indicial equation is given by $r(r-1)-2 r / 3=0$, that is, $r^{2}-$ $5 r / 3=0$, with roots $r_{1}=5 / 3$ and $r_{2}=0$.

For $x=-3$: the indicial equation is given by $r(r-1)+2 r / 3-1=0$, that is, $r^{2}-r / 3-1=0$, with roots $r_{1}=(1+\sqrt{37}) / 6$ and $r_{2}=(1-\sqrt{37}) / 6$.
14. (a) Here $x p(x)=2 x$ and $x^{2} q(x)=6 x e^{x}$. Both of these functions are analytic at $x=0$, therefore $x=0$ is a regular singular point. Note that $p_{0}=q_{0}=0$.
(b) The indicial equation is given by $r(r-1)=0$, that is, $r^{2}-r=0$, with roots $r_{1}=1$ and $r_{2}=0$.
(c) In order to find the solution corresponding to $r_{1}=1$, set $y=x \sum_{n=0}^{\infty} a_{n} x^{n}$. Upon substitution into the ODE, we have

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+1} x^{n+1}+2 \sum_{n=0}^{\infty}(n+1) a_{n} x^{n+1}+6 e^{x} \sum_{n=0}^{\infty} a_{n} x^{n+1}=0
$$

After adjusting the indices in the first two series, and expanding the exponential function,

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n(n+1) a_{n} x^{n}+2 \sum_{n=1}^{\infty} n a_{n-1} x^{n}+6 a_{0} x+\left(6 a_{0}+6 a_{1}\right) x^{2} \\
&+\left(6 a_{2}+6 a_{1}+3 a_{0}\right) x^{3}+\left(6 a_{3}+6 a_{2}+3 a_{1}+a_{0}\right) x^{4}+\ldots=0
\end{aligned}
$$

Equating the coefficients, we obtain the system of equations

$$
\begin{array}{r}
2 a_{1}+2 a_{0}+6 a_{0}=0 \\
6 a_{2}+4 a_{1}+6 a_{0}+6 a_{1}=0 \\
12 a_{3}+6 a_{2}+6 a_{2}+6 a_{1}+3 a_{0}=0 \\
20 a_{4}+8 a_{3}+6 a_{3}+6 a_{2}+3 a_{1}+a_{0}=0
\end{array}
$$

Setting $a_{0}=1$, solution of the system results in $a_{1}=-4, a_{2}=17 / 3, a_{3}=-47 / 12$, $a_{4}=191 / 120, \ldots$. Therefore one solution is

$$
y_{1}(x)=x-4 x^{2}+\frac{17}{3} x^{3}-\frac{47}{12} x^{4}+\ldots
$$

The exponents differ by an integer. So for a second solution, set

$$
y_{2}(x)=a y_{1}(x) \ln x+1+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}+\ldots
$$

Substituting into the ODE, we obtain

$$
a L\left[y_{1}(x)\right] \cdot \ln x+2 a y_{1}^{\prime}(x)+2 a y_{1}(x)-a \frac{y_{1}(x)}{x}+L\left[1+\sum_{n=1}^{\infty} c_{n} x^{n}\right]=0 .
$$

Since $L\left[y_{1}(x)\right]=0$, it follows that

$$
L\left[1+\sum_{n=1}^{\infty} c_{n} x^{n}\right]=-2 a y_{1}^{\prime}(x)-2 a y_{1}(x)+a \frac{y_{1}(x)}{x}
$$

More specifically,

$$
\begin{aligned}
\sum_{n=1}^{\infty} n(n & +1) c_{n+1} x^{n}+2 \sum_{n=1}^{\infty} n c_{n} x^{n}+6+\left(6+6 c_{1}\right) x \\
& +\left(6 c_{2}+6 c_{1}+3\right) x^{2}+\ldots=-a+10 a x-\frac{61}{3} a x^{2}+\frac{193}{12} a x^{3}+\ldots
\end{aligned}
$$

Equating the coefficients, we obtain the system of equations

$$
\begin{aligned}
6 & =-a \\
2 c_{2}+8 c_{1}+6 & =10 a \\
6 c_{3}+10 c_{2}+6 c_{1}+3 & =-\frac{61}{3} a \\
12 c_{4}+12 c_{3}+6 c_{2}+3 c_{1}+1 & =\frac{193}{12} a
\end{aligned}
$$

Solving these equations for the coefficients, $a=-6$. In order to solve the remaining equations, set $c_{1}=0$. Then $c_{2}=-33, c_{3}=449 / 6, c_{4}=-1595 / 24, \ldots$ Therefore a second solution is

$$
y_{2}(x)=-6 y_{1}(x) \ln x+\left[1-33 x^{2}+\frac{449}{6} x^{3}-\frac{1595}{24} x^{4}+\ldots\right]
$$

15.(a) Note the $p(x)=6 x /(x-1)$ and $q(x)=3 x^{-1}(x-1)^{-1}$. Furthermore, $x p(x)=$ $6 x^{2} /(x-1)$ and $x^{2} q(x)=3 x /(x-1)$. It follows that

$$
\begin{aligned}
p_{0} & =\lim _{x \rightarrow 0} \frac{6 x^{2}}{x-1}=0 \\
q_{0} & =\lim _{x \rightarrow 0} \frac{3 x}{x-1}=0
\end{aligned}
$$

and therefore $x=0$ is a regular singular point.
(b) The indicial equation is given by $r(r-1)=0$, that is, $r^{2}-r=0$, with roots $r_{1}=1$ and $r_{2}=0$.
(c) In order to find the solution corresponding to $r_{1}=1$, set $y=x \sum_{n=0}^{\infty} a_{n} x^{n}$. Upon substitution into the ODE, we have
$\sum_{n=1}^{\infty} n(n+1) a_{n} x^{n+1}-\sum_{n=1}^{\infty} n(n+1) a_{n} x^{n}+6 \sum_{n=0}^{\infty}(n+1) a_{n} x^{n+2}+3 \sum_{n=0}^{\infty} a_{n} x^{n+1}=0$.
After adjusting the indices, it follows that

$$
\sum_{n=2}^{\infty} n(n-1) a_{n-1} x^{n}-\sum_{n=1}^{\infty} n(n+1) a_{n} x^{n}+6 \sum_{n=2}^{\infty}(n-1) a_{n-2} x^{n}+3 \sum_{n=1}^{\infty} a_{n-1} x^{n}=0
$$

That is,

$$
-2 a_{1}+3 a_{0}+\sum_{n=2}^{\infty}\left[-n(n+1) a_{n}+\left(n^{2}-n+3\right) a_{n-1}+6(n-1) a_{n-2}\right] x^{n}=0
$$

Setting the coefficients equal to zero, we have $a_{1}=3 a_{0} / 2$, and for $n \geq 2$,

$$
n(n+1) a_{n}=\left(n^{2}-n+3\right) a_{n-1}+6(n-1) a_{n-2}
$$

If we assign $a_{0}=1$, then we obtain $a_{1}=3 / 2, a_{2}=9 / 4, a_{3}=51 / 16, \ldots$ Hence one solution is

$$
y_{1}(x)=x+\frac{3}{2} x^{2}+\frac{9}{4} x^{3}+\frac{51}{16} x^{4}+\frac{111}{40} x^{5}+\ldots
$$

The exponents differ by an integer. So for a second solution, set

$$
y_{2}(x)=a y_{1}(x) \ln x+1+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}+\ldots
$$

Substituting into the ODE, we obtain

$$
2 a x y_{1}^{\prime}(x)-2 a y_{1}^{\prime}(x)+6 a x y_{1}(x)-a y_{1}(x)+a \frac{y_{1}(x)}{x}+L\left[1+\sum_{n=1}^{\infty} c_{n} x^{n}\right]=0
$$

since $L\left[y_{1}(x)\right]=0$. It follows that

$$
L\left[1+\sum_{n=1}^{\infty} c_{n} x^{n}\right]=2 a y_{1}^{\prime}(x)-2 a x y_{1}^{\prime}(x)+a y_{1}(x)-6 a x y_{1}(x)-a \frac{y_{1}(x)}{x}
$$

Now

$$
\begin{aligned}
L\left[1+\sum_{n=1}^{\infty} c_{n} x^{n}\right] & =3+\left(-2 c_{2}+3 c_{1}\right) x+\left(-6 c_{3}+5 c_{2}+6 c_{1}\right) x^{2}+ \\
& +\left(-12 c_{4}+9 c_{3}+12 c_{2}\right) x^{3}+\left(-20 c_{5}+15 c_{4}+18 c_{3}\right) x^{4}+\ldots
\end{aligned}
$$

Substituting for $y_{1}(x)$, the right hand side of the ODE is

$$
a+\frac{7}{2} a x+\frac{3}{4} a x^{2}+\frac{33}{16} a x^{3}-\frac{867}{80} a x^{4}-\frac{441}{10} a x^{5}+\ldots
$$

Equating the coefficients, we obtain the system of equations

$$
\begin{aligned}
3 & =a \\
-2 c_{2}+3 c_{1} & =\frac{7}{2} a \\
-6 c_{3}+5 c_{2}+6 c_{1} & =\frac{3}{4} a \\
-12 c_{4}+9 c_{3}+12 c_{2} & =\frac{33}{16} a
\end{aligned}
$$

We find that $a=3$. In order to solve the second equation, set $c_{1}=0$. Solution of the remaining equations results in $c_{2}=-21 / 4, c_{3}=-19 / 4, c_{4}=-597 / 64, \ldots$. Hence a second solution is

$$
y_{2}(x)=3 y_{1}(x) \ln x+\left[1-\frac{21}{4} x^{2}-\frac{19}{4} x^{3}-\frac{597}{64} x^{4}+\ldots\right] .
$$

16.(a) After multiplying both sides of the ODE by x, we find that $x p(x)=0$ and $x^{2} q(x)=x$. Both of these functions are analytic at $x=0$, hence $x=0$ is a regular singular point.
(b) Furthermore, $p_{0}=q_{0}=0$. So the indicial equation is $r(r-1)=0$, with roots $r_{1}=1$ and $r_{2}=0$.
(c) In order to find the solution corresponding to $r_{1}=1$, set $y=x \sum_{n=0}^{\infty} a_{n} x^{n}$. Upon substitution into the ODE, we have

$$
\sum_{n=1}^{\infty} n(n+1) a_{n} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n+1}=0
$$

That is,

$$
\sum_{n=1}^{\infty}\left[n(n+1) a_{n}+a_{n-1}\right] x^{n}=0
$$

Setting the coefficients equal to zero, we find that for $n \geq 1$,

$$
a_{n}=\frac{-a_{n-1}}{n(n+1)}
$$

It follows that

$$
a_{n}=\frac{-a_{n-1}}{n(n+1)}=\frac{a_{n-2}}{(n-1) n^{2}(n+1)}=\ldots=\frac{(-1)^{n} a_{0}}{(n!)^{2}(n+1)}
$$

Hence one solution is

$$
y_{1}(x)=x-\frac{1}{2} x^{2}+\frac{1}{12} x^{3}-\frac{1}{144} x^{4}+\frac{1}{2880} x^{5}+\ldots
$$

The exponents differ by an integer. So for a second solution, set

$$
y_{2}(x)=a y_{1}(x) \ln x+1+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}+\ldots
$$

Substituting into the ODE, we obtain

$$
a L\left[y_{1}(x)\right] \cdot \ln x+2 a y_{1}^{\prime}(x)-a \frac{y_{1}(x)}{x}+L\left[1+\sum_{n=1}^{\infty} c_{n} x^{n}\right]=0 .
$$

Since $L\left[y_{1}(x)\right]=0$, it follows that

$$
L\left[1+\sum_{n=1}^{\infty} c_{n} x^{n}\right]=-2 a y_{1}^{\prime}(x)+a \frac{y_{1}(x)}{x}
$$

Now

$$
\begin{aligned}
L\left[1+\sum_{n=1}^{\infty} c_{n} x^{n}\right]= & 1+\left(2 c_{2}+c_{1}\right) x+\left(6 c_{3}+c_{2}\right) x^{2}+\left(12 c_{4}+c_{3}\right) x^{3} \\
& +\left(20 c_{5}+c_{4}\right) x^{4}+\left(30 c_{6}+c_{5}\right) x^{5}+\ldots
\end{aligned}
$$

Substituting for $y_{1}(x)$, the right hand side of the ODE is

$$
-a+\frac{3}{2} a x-\frac{5}{12} a x^{2}+\frac{7}{144} a x^{3}-\frac{1}{320} a x^{4}+\ldots
$$

Equating the coefficients, we obtain the system of equations

$$
\begin{aligned}
1 & =-a \\
2 c_{2}+c_{1} & =\frac{3}{2} a \\
6 c_{3}+c_{2} & =-\frac{5}{12} a \\
12 c_{4}+c_{3} & =\frac{7}{144} a
\end{aligned}
$$

Evidently, $a=-1$. In order to solve the second equation, set $c_{1}=0$. We then find that $c_{2}=-3 / 4, c_{3}=7 / 36, c_{4}=-35 / 1728, \ldots$ Therefore a second solution is

$$
y_{2}(x)=-y_{1}(x) \ln x+\left[1-\frac{3}{4} x^{2}+\frac{7}{36} x^{3}-\frac{35}{1728} x^{4}+\ldots\right] .
$$

19.(a) After dividing by the leading coefficient, we find that

$$
\begin{gathered}
p_{0}=\lim _{x \rightarrow 0} x p(x)=\lim _{x \rightarrow 0} \frac{\gamma-(1+\alpha+\beta) x}{1-x}=\gamma . \\
q_{0}=\lim _{x \rightarrow 0} x^{2} q(x)=\lim _{x \rightarrow 0} \frac{-\alpha \beta x}{1-x}=0 .
\end{gathered}
$$

Hence $x=0$ is a regular singular point. The indicial equation is $r(r-1)+\gamma r=0$, with roots $r_{1}=1-\gamma$ and $r_{2}=0$.
(b) For $x=1$,

$$
\begin{gathered}
p_{0}=\lim _{x \rightarrow 1}(x-1) p(x)=\lim _{x \rightarrow 1} \frac{-\gamma+(1+\alpha+\beta) x}{x}=1-\gamma+\alpha+\beta \\
q_{0}=\lim _{x \rightarrow 1}(x-1)^{2} q(x)=\lim _{x \rightarrow 1} \frac{\alpha \beta(x-1)}{x}=0
\end{gathered}
$$

Hence $x=1$ is a regular singular point. The indicial equation is

$$
r^{2}-(\gamma-\alpha-\beta) r=0
$$

with roots $r_{1}=\gamma-\alpha-\beta$ and $r_{2}=0$.
(c) Given that $r_{1}-r_{2}$ is not a positive integer, we can set $y=\sum_{n=0}^{\infty} a_{n} x^{n}$. Substitution into the ODE results in
$x(1-x) \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+[\gamma-(1+\alpha+\beta) x] \sum_{n=1}^{\infty} n a_{n} x^{n-1}-\alpha \beta \sum_{n=0}^{\infty} a_{n} x^{n}=0$.
That is,

$$
\sum_{n=1}^{\infty} n(n+1) a_{n+1} x^{n}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}+\gamma \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
$$

$$
-(1+\alpha+\beta) \sum_{n=1}^{\infty} n a_{n} x^{n}-\alpha \beta \sum_{n=0}^{\infty} a_{n} x^{n}=0 .
$$

Combining the series, we obtain

$$
\gamma a_{1}-\alpha \beta a_{0}+\left[(2+2 \gamma) a_{2}-(1+\alpha+\beta+\alpha \beta) a_{1}\right] x+\sum_{n=2}^{\infty} A_{n} x^{n}=0,
$$

in which

$$
A_{n}=(n+1)(n+\gamma) a_{n+1}-[n(n-1)+(1+\alpha+\beta) n+\alpha \beta] a_{n} .
$$

Note that $n(n-1)+(1+\alpha+\beta) n+\alpha \beta=(n+\alpha)(n+\beta)$. Setting the coefficients equal to zero, we have $\gamma a_{1}-\alpha \beta a_{0}=0$, and

$$
a_{n+1}=\frac{(n+\alpha)(n+\beta)}{(n+1)(n+\gamma)} a_{n}
$$

for $n \geq 1$. Hence one solution is
$y_{1}(x)=1+\frac{\alpha \beta}{\gamma \cdot 1!} x+\frac{\alpha(\alpha+1) \beta(\beta+1)}{\gamma(\gamma+1) \cdot 2!} x^{2}+\frac{\alpha(\alpha+1)(\alpha+2) \beta(\beta+1)(\beta+2)}{\gamma(\gamma+1)(\gamma+2) \cdot 3!} x^{3}+\ldots$.
Since the nearest other singularity is at $x=1$, the radius of convergence of $y_{1}(x)$ will be at least $\rho=1$.
(d) Given that $r_{1}-r_{2}$ is not a positive integer, we can set $y=x^{1-\gamma} \sum_{n=0}^{\infty} b_{n} x^{n}$. Then substitution into the ODE results in

$$
\begin{aligned}
& x(1-x) \sum_{n=0}^{\infty}(n+1-\gamma)(n-\gamma) a_{n} x^{n-\gamma-1} \\
& \quad+[\gamma-(1+\alpha+\beta) x] \sum_{n=0}^{\infty}(n+1-\gamma) a_{n} x^{n-\gamma}-\alpha \beta \sum_{n=0}^{\infty} a_{n} x^{n+1-\gamma}=0 .
\end{aligned}
$$

That is,

$$
\begin{aligned}
& \sum_{n=0}^{\infty}(n+1-\gamma)(n-\gamma) a_{n} x^{n-\gamma}-\sum_{n=0}^{\infty}(n+1-\gamma)(n-\gamma) a_{n} x^{n+1-\gamma} \\
& \quad+\gamma \sum_{n=0}^{\infty}(n+1-\gamma) a_{n} x^{n-\gamma}-(1+\alpha+\beta) \sum_{n=0}^{\infty}(n+1-\gamma) a_{n} x^{n+1-\gamma} \\
& \quad-\alpha \beta \sum_{n=0}^{\infty} a_{n} x^{n+1-\gamma}=0 .
\end{aligned}
$$

After adjusting the indices,

$$
\begin{aligned}
& \sum_{n=0}^{\infty}(n+1-\gamma)(n-\gamma) a_{n} x^{n-\gamma}-\sum_{n=1}^{\infty}(n-\gamma)(n-1-\gamma) a_{n-1} x^{n-\gamma} \\
& +\gamma \sum_{n=0}^{\infty}(n+1-\gamma) a_{n} x^{n-\gamma}-(1+\alpha+\beta) \sum_{n=1}^{\infty}(n-\gamma) a_{n-1} x^{n-\gamma}-\alpha \beta \sum_{n=1}^{\infty} a_{n-1} x^{n-\gamma}=0 .
\end{aligned}
$$

Combining the series, we obtain

$$
\sum_{n=1}^{\infty} B_{n} x^{n-\gamma}=0
$$

in which

$$
B_{n}=n(n+1-\gamma) b_{n}-[(n-\gamma)(n-\gamma+\alpha+\beta)+\alpha \beta] b_{n-1}
$$

Note that $(n-\gamma)(n-\gamma+\alpha+\beta)+\alpha \beta=(n+\alpha-\gamma)(n+\beta-\gamma)$. Setting $B_{n}=0$, it follows that for $n \geq 1$,

$$
b_{n}=\frac{(n+\alpha-\gamma)(n+\beta-\gamma)}{n(n+1-\gamma)} b_{n-1}
$$

Therefore a second solution is

$$
\begin{aligned}
y_{2}(x)=x^{1-\gamma} & {\left[1+\frac{(1+\alpha-\gamma)(1+\beta-\gamma)}{(2-\gamma) 1!} x\right.} \\
& \left.+\frac{(1+\alpha-\gamma)(2+\alpha-\gamma)(1+\beta-\gamma)(2+\beta-\gamma)}{(2-\gamma)(3-\gamma) 2!} x^{2}+\ldots\right]
\end{aligned}
$$

(e) Under the transformation $x=1 / \xi$, the ODE becomes

$$
\xi^{4} \frac{1}{\xi}\left(1-\frac{1}{\xi}\right) \frac{d^{2} y}{d \xi^{2}}+\left\{2 \xi^{3} \frac{1}{\xi}\left(1-\frac{1}{\xi}\right)-\xi^{2}\left[\gamma-(1+\alpha+\beta) \frac{1}{\xi}\right]\right\} \frac{d y}{d \xi}-\alpha \beta y=0
$$

That is,

$$
\left(\xi^{3}-\xi^{2}\right) \frac{d^{2} y}{d \xi^{2}}+\left[2 \xi^{2}-\gamma \xi^{2}+(-1+\alpha+\beta) \xi\right] \frac{d y}{d \xi}-\alpha \beta y=0
$$

Therefore $\xi=0$ is a singular point. Note that

$$
p(\xi)=\frac{(2-\gamma) \xi+(-1+\alpha+\beta)}{\xi^{2}-\xi} \text { and } q(\xi)=\frac{-\alpha \beta}{\xi^{3}-\xi^{2}}
$$

It follows that

$$
\begin{aligned}
p_{0}=\lim _{\xi \rightarrow 0} \xi p(\xi) & =\lim _{\xi \rightarrow 0} \frac{(2-\gamma) \xi+(-1+\alpha+\beta)}{\xi-1}=1-\alpha-\beta \\
q_{0} & =\lim _{\xi \rightarrow 0} \xi^{2} q(\xi)=\lim _{\xi \rightarrow 0} \frac{-\alpha \beta}{\xi-1}=\alpha \beta
\end{aligned}
$$

Hence $\xi=0 \quad(x=\infty)$ is a regular singular point. The indicial equation is

$$
r(r-1)+(1-\alpha-\beta) r+\alpha \beta=0
$$

or $r^{2}-(\alpha+\beta) r+\alpha \beta=0$. Evidently, the roots are $r=\alpha$ and $r=\beta$.
3. Here $x p(x)=1$ and $x^{2} q(x)=2 x$, which are both analytic everywhere. We set $y=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots\right)$. Substitution into the ODE results in

$$
\sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n}+\sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n}+2 \sum_{n=0}^{\infty} a_{n} x^{r+n+1}=0
$$

After adjusting the indices in the last series, we obtain

$$
a_{0}[r(r-1)+r] x^{r}+\sum_{n=1}^{\infty}\left[(r+n)(r+n-1) a_{n}+(r+n) a_{n}+2 a_{n-1}\right] x^{r+n}=0
$$

Assuming $a_{0} \neq 0$, the indicial equation is $r^{2}=0$, with double root $r=0$. Setting the remaining coefficients equal to zero, we have for $n \geq 1$,

$$
a_{n}(r)=-\frac{2}{(n+r)^{2}} a_{n-1}(r)
$$

It follows that

$$
a_{n}(r)=\frac{(-1)^{n} 2^{n}}{[(n+r)(n+r-1) \ldots(1+r)]^{2}} a_{0}, \quad n \geq 1
$$

Since $r=0$, one solution is given by

$$
y_{1}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}}{(n!)^{2}} x^{n}
$$

For a second linearly independent solution, we follow the discussion in Section 5.6. First note that

$$
\frac{a_{n}^{\prime}(r)}{a_{n}(r)}=-2\left[\frac{1}{n+r}+\frac{1}{n+r-1}+\ldots+\frac{1}{1+r}\right]
$$

Setting $r=0$,

$$
a_{n}^{\prime}(0)=-2 H_{n} a_{n}(0)=-2 H_{n} \frac{(-1)^{n} 2^{n}}{(n!)^{2}}
$$

Therefore,

$$
y_{2}(x)=y_{1}(x) \ln x-2 \sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n} H_{n}}{(n!)^{2}} x^{n}
$$

4. Here $x p(x)=4$ and $x^{2} q(x)=2+x$, which are both analytic everywhere. We set $y=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots\right)$. Substitution into the ODE results in

$$
\begin{aligned}
\sum_{n=0}^{\infty}(r+n)(r+n-1) & a_{n} x^{r+n}+4 \sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n} \\
& +\sum_{n=0}^{\infty} a_{n} x^{r+n+1}+2 \sum_{n=0}^{\infty} a_{n} x^{r+n}=0
\end{aligned}
$$

After adjusting the indices in the second-to-last series, we obtain
$a_{0}[r(r-1)+4 r+2] x^{r}$

$$
+\sum_{n=1}^{\infty}\left[(r+n)(r+n-1) a_{n}+4(r+n) a_{n}+2 a_{n}+a_{n-1}\right] x^{r+n}=0
$$

Assuming $a_{0} \neq 0$, the indicial equation is $r^{2}+3 r+2=0$, with roots $r_{1}=-1$ and $r_{2}=-2$. Setting the remaining coefficients equal to zero, we have for $n \geq 1$,

$$
a_{n}(r)=-\frac{1}{(n+r+1)(n+r+2)} a_{n-1}(r)
$$

It follows that

$$
a_{n}(r)=\frac{(-1)^{n}}{[(n+r+1)(n+r) \ldots(2+r)][(n+r+2)(n+r) \ldots(3+r)]} a_{0}, n \geq 1
$$

Since $r_{1}=-1$, one solution is given by

$$
y_{1}(x)=x^{-1} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n)!(n+1)!} x^{n}
$$

For a second linearly independent solution, we follow the discussion in Section 5.6. Since $r_{1}-r_{2}=N=1$, we find that

$$
a_{1}(r)=-\frac{1}{(r+2)(r+3)}
$$

with $a_{0}=1$. Hence the leading coefficient in the solution is

$$
a=\lim _{r \rightarrow-2}(r+2) a_{1}(r)=-1
$$

Further,

$$
(r+2) a_{n}(r)=\frac{(-1)^{n}}{(n+r+2)[(n+r+1)(n+r) \ldots(3+r)]^{2}}
$$

Let $A_{n}(r)=(r+2) a_{n}(r)$. It follows that

$$
\frac{A_{n}^{\prime}(r)}{A_{n}(r)}=-\frac{1}{n+r+2}-2\left[\frac{1}{n+r+1}+\frac{1}{n+r}+\ldots+\frac{1}{3+r}\right]
$$

Setting $r=r_{2}=-2$,

$$
\frac{A_{n}^{\prime}(-2)}{A_{n}(-2)}=-\frac{1}{n}-2\left[\frac{1}{n-1}+\frac{1}{n-2}+\ldots+1\right]=-H_{n}-H_{n-1}
$$

Hence

$$
c_{n}(-2)=-\left(H_{n}+H_{n-1}\right) A_{n}(-2)=-\left(H_{n}+H_{n-1}\right) \frac{(-1)^{n}}{n!(n-1)!}
$$

Therefore,

$$
y_{2}(x)=-y_{1}(x) \ln x+x^{-2}\left[1-\sum_{n=1}^{\infty} \frac{(-1)^{n}\left(H_{n}+H_{n-1}\right)}{n!(n-1)!} x^{n}\right]
$$

6. Let $y(x)=v(x) / \sqrt{x}$. Then $y^{\prime}=x^{-1 / 2} v^{\prime}-x^{-3 / 2} v / 2$ and $y^{\prime \prime}=x^{-1 / 2} v^{\prime \prime}-$ $x^{-3 / 2} v^{\prime}+3 x^{-5 / 2} v / 4$. Substitution into the ODE results in

$$
\left[x^{3 / 2} v^{\prime \prime}-x^{1 / 2} v^{\prime}+3 x^{-1 / 2} v / 4\right]+\left[x^{1 / 2} v^{\prime}-x^{-1 / 2} v / 2\right]+\left(x^{2}-\frac{1}{4}\right) x^{-1 / 2} v=0
$$

Simplifying, we find that

$$
v^{\prime \prime}+v=0
$$

with general solution $v(x)=c_{1} \cos x+c_{2} \sin x$. Hence

$$
y(x)=c_{1} x^{-1 / 2} \cos x+c_{2} x^{-1 / 2} \sin x
$$

8. The absolute value of the ratio of consecutive terms is

$$
\left|\frac{a_{2 m+2} x^{2 m+2}}{a_{2 m} x^{2 m}}\right|=\frac{|x|^{2 m+2} 2^{2 m}(m+1)!m!}{|x|^{2 m} 2^{2 m+2}(m+2)!(m+1)!}=\frac{|x|^{2}}{4(m+2)(m+1)} .
$$

Applying the ratio test,

$$
\lim _{m \rightarrow \infty}\left|\frac{a_{2 m+2} x^{2 m+2}}{a_{2 m} x^{2 m}}\right|=\lim _{m \rightarrow \infty} \frac{|x|^{2}}{4(m+2)(m+1)}=0
$$

Hence the series for $J_{1}(x)$ converges absolutely for all values of x. Furthermore, since the series for $J_{0}(x)$ also converges absolutely for all x, term-by-term differentiation results in

$$
\begin{gathered}
J_{0}^{\prime}(x)=\sum_{m=1}^{\infty} \frac{(-1)^{m} x^{2 m-1}}{2^{2 m-1} m!(m-1)!}=\sum_{m=0}^{\infty} \frac{(-1)^{m+1} x^{2 m+1}}{2^{2 m+1}(m+1)!m!}= \\
=-\frac{x}{2} \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2 m}}{2^{2 m}(m+1)!m!}
\end{gathered}
$$

Therefore, $J_{0}^{\prime}(x)=-J_{1}(x)$.
9. (a) Note that $x p(x)=1$ and $x^{2} q(x)=x^{2}-\nu^{2}$, which are both analytic at $x=0$. Thus $x=0$ is a regular singular point. Furthermore, $p_{0}=1$ and $q_{0}=-\nu^{2}$. Hence the indicial equation is $r^{2}-\nu^{2}=0$, with roots $r_{1}=\nu$ and $r_{2}=-\nu$.
(b) Set $y=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots\right)$. Substitution into the ODE results in

$$
\begin{aligned}
\sum_{n=0}^{\infty}(r+n)(r+n-1) & a_{n} x^{r+n}+\sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n} \\
& +\sum_{n=0}^{\infty} a_{n} x^{r+n+2}-\nu^{2} \sum_{n=0}^{\infty} a_{n} x^{r+n}=0
\end{aligned}
$$

After adjusting the indices in the second-to-last series, we obtain

$$
\begin{aligned}
& a_{0}\left[r(r-1)+r-\nu^{2}\right] x^{r}+a_{1}\left[(r+1) r+(r+1)-\nu^{2}\right] \\
& \quad+\sum_{n=2}^{\infty}\left[(r+n)(r+n-1) a_{n}+(r+n) a_{n}-\nu^{2} a_{n}+a_{n-2}\right] x^{r+n}=0 .
\end{aligned}
$$

Setting the coefficients equal to zero, we find that $a_{1}=0$, and

$$
a_{n}=\frac{-1}{(r+n)^{2}-\nu^{2}} a_{n-2}
$$

for $n \geq 2$. It follows that $a_{3}=a_{5}=\ldots=a_{2 m+1}=\ldots=0$. Furthermore, with $r=\nu$,

$$
a_{n}=\frac{-1}{n(n+2 \nu)} a_{n-2}
$$

So for $m=1,2, \ldots$,

$$
a_{2 m}=\frac{-1}{2 m(2 m+2 \nu)} a_{2 m-2}=\frac{(-1)^{m}}{2^{2 m} m!(1+\nu)(2+\nu) \ldots(m-1+\nu)(m+\nu)} a_{0}
$$

Hence one solution is

$$
y_{1}(x)=x^{\nu}\left[1+\sum_{m=1}^{\infty} \frac{(-1)^{m}}{m!(1+\nu)(2+\nu) \ldots(m-1+\nu)(m+\nu)}\left(\frac{x}{2}\right)^{2 m}\right]
$$

(c) Assuming that $r_{1}-r_{2}=2 \nu$ is not an integer, simply setting $r=-\nu$ in the above results in a second linearly independent solution

$$
y_{2}(x)=x^{-\nu}\left[1+\sum_{m=1}^{\infty} \frac{(-1)^{m}}{m!(1-\nu)(2-\nu) \ldots(m-1-\nu)(m-\nu)}\left(\frac{x}{2}\right)^{2 m}\right] .
$$

(d) The absolute value of the ratio of consecutive terms in $y_{1}(x)$ is

$$
\begin{aligned}
\left|\frac{a_{2 m+2} x^{2 m+2}}{a_{2 m} x^{2 m}}\right| & =\frac{|x|^{2 m+2} 2^{2 m} m!(1+\nu) \ldots(m+\nu)}{|x|^{2 m} 2^{2 m+2}(m+1)!(1+\nu) \ldots(m+1+\nu)} \\
& =\frac{|x|^{2}}{4(m+1)(m+1+\nu)}
\end{aligned}
$$

Applying the ratio test,

$$
\lim _{m \rightarrow \infty}\left|\frac{a_{2 m+2} x^{2 m+2}}{a_{2 m} x^{2 m}}\right|=\lim _{m \rightarrow \infty} \frac{|x|^{2}}{4(m+1)(m+1+\nu)}=0
$$

Hence the series for $y_{1}(x)$ converges absolutely for all values of x. The same can be shown for $y_{2}(x)$. Note also, that if ν is a positive integer, then the coefficients in the series for $y_{2}(x)$ are undefined.
10.(a) It suffices to calculate $L\left[J_{0}(x) \ln x\right]$. Indeed,

$$
\left[J_{0}(x) \ln x\right]^{\prime}=J_{0}^{\prime}(x) \ln x+\frac{J_{0}(x)}{x}
$$

and

$$
\left[J_{0}(x) \ln x\right]^{\prime \prime}=J_{0}^{\prime \prime}(x) \ln x+2 \frac{J_{0}^{\prime}(x)}{x}-\frac{J_{0}(x)}{x^{2}}
$$

Hence

$$
\begin{aligned}
L\left[J_{0}(x) \ln x\right] & =x^{2} J_{0}^{\prime \prime}(x) \ln x+2 x J_{0}^{\prime}(x)-J_{0}(x) \\
& +x J_{0}^{\prime}(x) \ln x+J_{0}(x)+x^{2} J_{0}(x) \ln x
\end{aligned}
$$

Since $x^{2} J_{0}^{\prime \prime}(x)+x J_{0}^{\prime}(x)+x^{2} J_{0}(x)=0$,

$$
L\left[J_{0}(x) \ln x\right]=2 x J_{0}^{\prime}(x) .
$$

(b) Given that $L\left[y_{2}(x)\right]=0$, after adjusting the indices in part (a), we have

$$
b_{1} x+2^{2} b_{2} x^{2}+\sum_{n=3}^{\infty}\left(n^{2} b_{n}+b_{n-2}\right) x^{n}=-2 x J_{0}^{\prime}(x)
$$

Using the series representation of $J_{0}^{\prime}(x)$ in Problem 8,

$$
b_{1} x+2^{2} b_{2} x^{2}+\sum_{n=3}^{\infty}\left(n^{2} b_{n}+b_{n-2}\right) x^{n}=-2 \sum_{n=1}^{\infty} \frac{(-1)^{n}(2 n) x^{2 n}}{2^{2 n}(n!)^{2}}
$$

(c) Equating the coefficients on both sides of the equation, we find that

$$
b_{1}=b_{3}=\ldots=b_{2 m+1}=\ldots=0
$$

Also, with $n=1,2^{2} b_{2}=1 /(1!)^{2}$, that is, $b_{2}=1 /\left[2^{2}(1!)^{2}\right]$. Furthermore, for $m \geq 2$,

$$
(2 m)^{2} b_{2 m}+b_{2 m-2}=-2 \frac{(-1)^{m}(2 m)}{2^{2 m}(m!)^{2}}
$$

More explicitly,

$$
\begin{aligned}
& b_{4}=-\frac{1}{2^{2} 4^{2}}\left(1+\frac{1}{2}\right) \\
& b_{6}=\frac{1}{2^{2} 4^{2} 6^{2}}\left(1+\frac{1}{2}+\frac{1}{3}\right)
\end{aligned}
$$

It can be shown, in general, that

$$
b_{2 m}=(-1)^{m+1} \frac{H_{m}}{2^{2 m}(m!)^{2}}
$$

11. Bessel's equation of order one is

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0
$$

Based on Problem 9, the roots of the indicial equation are $r_{1}=1$ and $r_{2}=-1$. Set $y=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots\right)$. Substitution into the ODE results in

$$
\begin{aligned}
\sum_{n=0}^{\infty}(r+n)(r+n-1) & a_{n} x^{r+n}+\sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n} \\
& +\sum_{n=0}^{\infty} a_{n} x^{r+n+2}-\sum_{n=0}^{\infty} a_{n} x^{r+n}=0
\end{aligned}
$$

After adjusting the indices in the second-to-last series, we obtain
$a_{0}[r(r-1)+r-1] x^{r}+a_{1}[(r+1) r+(r+1)-1]$

$$
+\sum_{n=2}^{\infty}\left[(r+n)(r+n-1) a_{n}+(r+n) a_{n}-a_{n}+a_{n-2}\right] x^{r+n}=0
$$

Setting the coefficients equal to zero, we find that $a_{1}=0$, and

$$
a_{n}(r)=\frac{-1}{(r+n)^{2}-1} a_{n-2}(r)=\frac{-1}{(n+r+1)(n+r-1)} a_{n-2}(r)
$$

for $n \geq 2$. It follows that $a_{3}=a_{5}=\ldots=a_{2 m+1}=\ldots=0$. Solving the recurrence relation,

$$
a_{2 m}(r)=\frac{(-1)^{m}}{(2 m+r+1)(2 m+r-1)^{2} \ldots(r+3)^{2}(r+1)} a_{0}
$$

With $r=r_{1}=1$,

$$
a_{2 m}(1)=\frac{(-1)^{m}}{2^{2 m}(m+1)!m!} a_{0}
$$

For a second linearly independent solution, we follow the discussion in Section 5.6. Since $r_{1}-r_{2}=N=2$, we find that

$$
a_{2}(r)=-\frac{1}{(r+3)(r+1)}
$$

with $a_{0}=1$. Hence the leading coefficient in the solution is

$$
a=\lim _{r \rightarrow-1}(r+1) a_{2}(r)=-\frac{1}{2}
$$

Further,

$$
(r+1) a_{2 m}(r)=\frac{(-1)^{m}}{(2 m+r+1)[(2 m+r-1) \ldots(3+r)]^{2}}
$$

Let $A_{n}(r)=(r+1) a_{n}(r)$. It follows that

$$
\frac{A_{2 m}^{\prime}(r)}{A_{2 m}(r)}=-\frac{1}{2 m+r+1}-2\left[\frac{1}{2 m+r-1}+\ldots+\frac{1}{3+r}\right]
$$

Setting $r=r_{2}=-1$, we calculate

$$
\begin{aligned}
& c_{2 m}(-1)=-\frac{1}{2}\left(H_{m}+H_{m-1}\right) A_{2 m}(-1) \\
& \quad=-\frac{1}{2}\left(H_{m}+H_{m-1}\right) \frac{(-1)^{m}}{2 m[(2 m-2) \ldots 2]^{2}}=-\frac{1}{2}\left(H_{m}+H_{m-1}\right) \frac{(-1)^{m}}{2^{2 m-1} m!(m-1)!}
\end{aligned}
$$

Note that $a_{2 m+1}(r)=0$ implies that $A_{2 m+1}(r)=0$, so

$$
c_{2 m+1}(-1)=\left[\frac{d}{d r} A_{2 m+1}(r)\right]_{r=r_{2}}=0
$$

Therefore,
$y_{2}(x)=-\frac{1}{2}\left[x \sum_{m=0}^{\infty} \frac{(-1)^{m}}{(m+1)!m!}\left(\frac{x}{2}\right)^{2 m}\right] \ln x$

$$
+\frac{1}{x}\left[1-\sum_{m=1}^{\infty} \frac{(-1)^{m}\left(H_{m}+H_{m-1}\right)}{m!(m-1)!}\left(\frac{x}{2}\right)^{2 m}\right] .
$$

Based on the definition of $J_{1}(x)$,

$$
y_{2}(x)=-J_{1}(x) \ln x+\frac{1}{x}\left[1-\sum_{m=1}^{\infty} \frac{(-1)^{m}\left(H_{m}+H_{m-1}\right)}{m!(m-1)!}\left(\frac{x}{2}\right)^{2 m}\right] .
$$

