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Linear Equations

1. Apply the ratio test:

(@ =3)"] _

lim = lim |z—3|]=|z—3|.
n — o0

n—oo |(z—3)"
Hence the series converges absolutely for |z — 3| < 1. The radius of convergence
is p=1. The series diverges for x = 2 and x = 4, since the n-th term does not
approach zero.

3. Applying the ratio test,

‘n! x2nt2 } ] 2

n1—>moo |(n+1)|1‘2”| - nl—>moo'n,+1 -

The series converges absolutely for all values of . Thus the radius of convergence
is p=o00.

4. Apply the ratio test:

|2n+1$n+1|
lim = lim 2z|=2]|z|.
Hence the series converges absolutely for 2|z| < 1, or |z| < 1/2. The radius of
convergence is p = 1/2. The series diverges for x = +1/2, since the n-th term

does not approach zero.
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Chapter 5. Series Solutions of Second Order Linear Equations

6. Applying the ratio test,

: |”(I*x0)n+1| : n
1 - 1 _n _ _ B '
”E%O|(n+1)(a:—xo)"| ] [(z = z0)| = |(z — =)

Hence the series converges absolutely for |(z — zp)| < 1. The radius of convergence
isp=1. At x = 29 + 1, we obtain the harmonic series, which is divergent. At the
other endpoint, x = zg — 1, we obtain

0o _1)n
Z(n) ,

n=1

which is conditionally convergent.

7. Apply the ratio test :

_[3"(n+1)2(z +2)" (4 1)?
hm = —_—
n = oo ‘3”+1n2(,1:—|-2)”| nooo 3n2

1
(@ +2)] =g l(@+2)].
Hence the series converges absolutely for § [z + 2| < 1, or |z + 2| < 3. The radius
of convergence is p = 3. At z = —5 and = = +1, the series diverges, since the n-th

term does not approach zero.

8. Applying the ratio test,

. nt(n+ 1)1t ) n" 1
im = lim —|z| = —|z|,
n—oo |(n+1)"Hnlzn|  n—ooo (n+1)7 e
since
n
1
lim — = lim (14 =) ""=e¢"1.

Hence the series converges absolutely for |z| < e. The radius of convergence is
p=ec. At x = e, the series diverges, since the n-th term does not approach zero.
This follows from the fact that
nle™
lim ———=1.

n—00 nN\/2mn

10. We have f(z) = e®, with f(")(z) = e, for n =1,2,.... Therefore f((0) = 1.
Hence the Taylor expansion about zyp = 0 is

o0 :En
T _ _—
-y o
n=~0
Applying the ratio test,
|n!x”+1|
™ —  lim |z| = 0.

The radius of convergence is p = c0.
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11. We have f(z) =z, with f/(z) =1 and f™(z) =0, for n=2,.... Clearly,
f(1)=1and f’(1) =1, with all other derivatives equal to zero. Hence the Taylor
expansion about zg = 1 is

=1+ (z-1).

Since the series has only a finite number of terms, it converges absolutely for all x .

14. We have f(z) =1/(1+z), f'(z) = -1/(1 + )2, f"(x) =2/(1 + 2)3,... with
fO(z) = (=1)"n!/(1 4+ 2)"*t, for n>1. Tt follows that f™(0) = (—1)"n! for
n > 0. Hence the Taylor expansion about zg =0 is

1 o0
— _1 n n'
1+ 7;0( )z

Applying the ratio test,

|wn+1 ‘

lim = lim |z| = |z]|.

The series converges absolutely for || < 1, but diverges at x = +1.

15. We have f(z) =1/(1—2z), f'(z) =1/(1—2)2, f"(z) =2/(1 —z)3,... with
fO(z) =n!/(1 —2)"*, for n > 1. It follows that £ (0) = n!, for n > 0. Hence
the Taylor expansion about zg = 0 is

1 o0
l—m:gx'

n=0

Applying the ratio test,

o]
lim = lim |z|=|z|.

The series converges absolutely for |z| < 1, but diverges at z =+ 1.

16. We have f(z)=1/(1—2), f'(z) =1/(1 — )2, f"(x)=2/(1 —x)3,... with
f () =n!/(1 —z)**, for n > 1. It follows that f(™)(2) = (—=1)"*'n! for n > 0.
Hence the Taylor expansion about xg = 2 is

1 - n n
R DCCEL

Applying the ratio test,

@2
lim ———— = lim |z —2|=|z—2|.
n— oo ‘(x72)n| n — oo

The series converges absolutely for | — 2| < 1, but diverges at z =1 and z = 3.

17. Applying the ratio test,

P (U B 3 |
n— 0o | nazn| n—oo N

x| = |-



130 Chapter 5. Series Solutions of Second Order Linear Equations

The series converges absolutely for |z] < 1. Term-by-term differentiation results in

= Zan”_l:1+4x+9x2+16x3+...

n=1
Z (n—1)2""2 = 44 18z + 4822 + 1002° + . ..

Shifting the indices, we can also write

(oo}

y' = Z(n+1)2x” and y” = Z(n+2)2(n+1)x
n=20

n=0

20. Shifting the index in the second series, that is, setting n =k + 1,

o0
g apxktt = E ap_12" .

k=0 n=1

Hence

k=1

(oo} (oo}

k
E Ap12° + E aka: g ak+1x + E Ap— 13:
k=0 k=0

=a1 + Z (ags1 + akfl)xk—’_l.
k=1
21. Shifting the index by 2, that is, setting m =n — 2,

oo o0

Z n(n —apz" 2 = Z (m+2)(m+ Dayizx™

n=2 =

= Z n+2)(n+1a,r22™.

22. Shift the index down by 2, that is, set m =n 4 2. It follows that

o0 o0 o0
E apr™t? = E Ao z™ = g Ay x" .
n=20 m=2

n=2

24. Clearly,

oo oo e}

(1—2?) Z n(n —1)a,z" 2 = Z n(n —1)a,z" 2 - Z n(n — Dayz™.

n=2 n=2 n=22
Shifting the index in the first series, that is, setting k = n — 2,

oo oo

Z n(n —1a,z™? = Z (k4 2)(k + 1)ag o "

n=2 =

Z (n+2)(n+ 1)ap42z™.
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Hence

o0 oo o0

(1— 2% Z n(n —1)a,z" 2 = Z (n+2)(n+ Dapsgz™ — Z n(n — 1)a,a".

n=2 n=20 n=2
Note that when n = 0 and n = 1, the coefficients in the second series are zero. So

oo oo

(1 —2?) Z n(n —1a,z" 2% = Z [(n+2)(n+ Daptz —n(n —1)ay]z™.

n=2 n=0

26. Clearly,

o0 oo o oo
E na, "t 4+ g anx" = E nan 2" + E an 2"
n=0 n=20

n=1 n=1
Shifting the index in the first series, that is, setting k =n —1,

o0

i na, " = Z (k+ l)akﬂxk.

n=1 k=0

Shifting the index in the second series, that is, setting k =n+1,

o0 o0
E ap 2"t = g ap_12".
n=20

k=1

Combining the series, and starting the summation at n =1,

o0 o0 oo
Z na, 2" '+ x Z an " = a; + Z [(n+ 1Dapt1 + an—1]a™.
n=0

n=1 n=1

27. We note that

o0 (o) (o] o0
T Z n(n — 1a, a2 4 Z an " = Z n(n —Da, 2" + Z anx".
n=2 n=0 n=2 n=0
Shifting the index in the first series, that is, setting k =n — 1,
oo oo (oo}
Z n(n—Da, 2" = Z k(k + a2 = Z k(k + 1agg 12",
n=2 k=1 k=0

since the coefficient of the term associated with k = 0 is zero. Combining the series,
o0

x Z n(n — 1a, 2" 2 + Z ap " = Z [n(n+ Daps1 + an) ™.
n=0

n=2 n=0
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o
N

1.(a,b,d) Let y = ag + a1z + asx® + ... + a2 +.... Then

o0

n=2 n=0

Substitution into the ODE results in

o0

Z(n+2)(n+1 Yant2 " Zan =

n=0

or

ST +2)(n+ Dants —an)a™ = 0.
n=0

Equating all the coefficients to zero,

(n+2)(n+1apt2 —an, =0, n=0,1,2,....
We obtain the recurrence relation
an+2:a—n, n=0,1,2,....

(n+1)(n+2)
The subscripts differ by two, so for £ =1,2,...

aop = 2E=2 a2k —4 _ _ %
T k—1)2k  (2k—3)(2k—2)(2k— 12k T (2k)!
and
a _ o @2k-1 a2k—3 _ _ ai
T ok2Ek+1) T (2k—2)(2k—1)2k(2k+1) T (2k+ 1)
Hence
o 2 p2k+1
- g (2 2k + 1)
The linearly independent solutions are
2?2 2 S
y1*1+—+ﬁ+a+ . =cosh x
3 x® 2T
—x—l—?—l—g—l—?—% . =sinh x.

(c¢) The Wronskian at 0 is 1.

4.(a,b,d) Let y = ag + a1z + asx® + ... + apz™ + .... Then

inn—lan in+2 Y(n+ Dagpi2 2™

n=2 n=20

= Z n(n —Da,z"? = Z (n+2)(n+ 1apt2 ™.
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Substitution into the ODE results in

oo

n+2)(n+ Dapisz™ + k222 apz” =0.
> n

n=0 n=0

Rewriting the second summation,

(n+2)(n+ Dapsaz™ + Z k2a,_o " =0,

n=0 n=2

that is,

2a2 +3-2azz + Z [(n+2)(n+ 1)ans2 + kPan—2] 2" = 0.

n=2

Setting the coefficients equal to zero, we have as =0, a3 =0, and
(n+2)(n+1)apo +k*an_o=0, for n=2,34,....

The recurrence relation can be written as

kQCLn_Q
Upyo = ———— "2 =234,....
2 (n+2)(n+1)
The indices differ by four, so a4, ag, ai2,... are defined by
k2aq ka4 k2ag
4= ———, Gg = ———, Q13 = —
YT g3 T TR T 121
Similarly, as, ag, ai3,... are defined by
k2a1 ]412(15 k2a9
a5 =——, Qg = ———, ay3 = —
ST 54 T 98P T 1312

The remaining coefficients are zero. Therefore the general solution is

k> 4 Kt 8 k° 12
= 1-— —
Y ao[ 13" Ysr 43" narst7aszt %
K5 ke 9 ke 13
o [x—Mx T9 8547 1B 12.9.8.4.4° ]
Note that for the even coefficients,
k24—
m = = > :1,2, yeen
4 (4m — 1)dm mn 3
and for the odd coefficients,
k%a4m—3
] = — . 0Am=3 =1,2,3,....
ml = T m@m 1) 3

Hence the linearly independent solutions are
(oo}
-1 m+1 k22174 m—+1
yi(z) =14+ Z (=) ( )
m:03~4-7-8 oo (dm+3)(dm +4)

B 0o (_1>m+1(k2$4)7n+1
ya(z) == 1+mZ:04-5.8~9...(4m+4)(4m+5) '
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(¢) The Wronskian at 0 is 1.

6.(a,b) Let y = ap + a1z + axz® + ...+ a,2™ +.... Then

oo 9]
y/ = Z nanxnfl = Z (n + 1)&7L+12En
n=0

n=1

and

M8

y" = Z n(n —Da,z"? =

n=2 n

Substitution into the ODE results in

(n+2)(n+1)ap422™.

Il
o

o

oo o0
(24 2?) Z (n+2)(n+1api2z™ —x Z(n—i— Dapyr12"™ +4 Z anz” =0.

n=0 n=20 n=0

Before proceeding, write

oo

z? Z (n+2)(n+ Dapqaz™ = Z n(n — Da,z"

n=0 n=
and
x Z (n+1app12" = Z napx".
n=0 n=1
It follows that
dag + 4as + (3ag + 12a3)z+

+ Z 2(n+2)(n+ 1)ant2 + n(n — Da, —na, +4a,]z" = 0.
n=2
Equating the coeflicients to zero, we find that ay = —ag, ag = —a;/4, and
n?—2n+4
Opyo =——F——7——0ay, n=012,....
2T o+ 2)(n+1)
The indices differ by two, so for k=0,1,2,...
(2k)* — 4k + 4

G2k = To 0k 1 2) 2k + 1)

and
(2k +1)2 — 4k +2

A2k43 = — 202k + 3)(2k + 2) A2k+1-

Hence the linearly independent solutions are

2

o224 T
yi() SR i

Y
4 160 1920

yo(z) =2 —

(c¢) The Wronskian at 0 is 1.
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7.(a,b,d) Let y = ag + a1 + asz? + ...+ a,a™ +.... Then

o0 o0
y' = Z napz" ! = Z (n+ Dapp12”
n=1 n=0
and
y" = Z n(n —1a,z"? = Z (n+2)(n+ apto ™.
n=2 n=20
Substitution into the ODE results in
Z (n+2)(n+1aps2z™ +x Z (n+1ap12™ + 2 Z apz” =0.
n=0 n=0 n=0

First write

o0 (o)
x Z (n+ Daypi2™ = Z napx".

n=0 n=1

We then obtain

2as + 2a¢ + Z [(n+2)(n+ 1Dapss +nap +2a,]z" =0.

n=1
It follows that az = —ag and apy2 = —an/(n+1), n=0,1,2,.... Note that the
indices differ by two, so for £k =1,2,...
aon = 92k=2 agk—4 _ (=1)*ag
T %k -1 (2k—3)2k—-1) 7 1-3-5...(2k—1)
and
a _ _O2k—1 _  O2k—3 _  _ (=D*ay
2k 2k (2k—2)2k T 2-4-6...(2k)°

Hence the linearly independent solutions are

T X T T
—1- 4+ 2 =1
(@) 1713 135" +§11-3~5...(2n—1)
yg(x):x—x—S—Fi—L—l— :x_A'_OO%
2 2.4 2.4.6 7 4946 (2n)

(c¢) The Wronskian at 0 is 1.

9.(a,b,d) Let y = ap + a1 + azz® + ... + a,2™ +.... Then

[e.©]

oo
y' = Z nanx" "t = Z (n+ 1apy12"

n=1 n=20
and

b= 3 - D = 3 (0 20+ Dan a2

n=2 n=20
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Substitution into the ODE results in

o0

(1+2?) Z (n+2)(n+ 1)apoz™ — 4z Z (n+1)apt12" +6 Z apz” =0.

n=0 n=20 n=20

Before proceeding, write

z? Z (n+2)(n+1)apoz™ = Z n(n — 1apz"™
n=20 n=2
and
T Z (n+ Dayy12™ = Z na,x".
n=0 n=1

It follows that
6ag + 2az + (2a1 + 6az)x+

+ Z [(n+2)(n+ 1Daptz +n(n —1)a, —4nay, + 6a,] 2" =0.
n=2
Setting the coefficients equal to zero, we obtain as = —3ag, az = —a1/3, and
(n—2)(n—3)
=—0—Q—= =0,1,2,....
An+2 (n+1)(n+2)an7 n 5 Ly 4y

Observe that for n =2 and n = 3, we obtain a4 = a5 = 0. Since the indices dif-
fer by two, we also have a, =0 for n > 4. Therefore the general solution is a
polynomial

y = ao + a1z — 3apr® — a12/3.

Hence the linearly independent solutions are

yi(z) =1-32> and yo(z) =2 —2°/3.

(c) The Wronskian is (22 + 1)2. At x = 0 it is 1.

10.(a,b,d) Let y = ag + a1z + asx® + ... + a,a™ + .... Then

o0 oo

b= 3 nln - Dane? = 3 (0 20+ Dan iz

n=2 n=20

Substitution into the ODE results in

(4-27) Z (n+2)(n+1ayp22" +2 Z apz™ =0.
n=0 n=0
First write
[ee] oo
z? (n+2)(n+ Dapiaz™ = Z n(n — Dayz™.
n=20 n=2

It follows that
2ag + 8az + (2a1 + 24a3)x+
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—1—2 (n+2)(n+ 1apt2 — n(n — Day, + 2a,] 2" =0.

n=2
We obtain ag = —ag/4, ag = —a1/12 and
4(n+2)apt2 = (n—2)a,, n=0,1,2,....

Note that for n = 2, a4 = 0. Since the indices differ by two, we also have as, =0
for k =2,3,.... On the other hand, for k=1,2,...,

S (2k — 3)agk—1 _ (2k —5)(2k — 3)agk—3 _ —a '
42k +1) 42(2k — 1)(2k + 1) 4k (2k — 1)(2k + 1)
Therefore the general solution is
2l
y—ao+a1$—a0 alz4n Den 1)

Hence the linearly independent solutions are y;(z) = 1 — 22/4 and
3 5 7 p2n+1

@) =T 15~ T o0 T Z4”(2n—1)(2n+ )’

(¢) The Wronskian at 0 is 1.

11.(a,b,d) Let y = ag + a1z + asx® + ... + apz™ + .... Then

y = i napx™ "t = i (n+ 1Day 12"
n=1 n—=0
and - -
y" = Z n(n —1a,z" 2 = Z (n+2)(n+ Dayiox™.
n=2 n=0
Substitution into the ODE results in
(3 —2?) i(n+2)(n+1)an+2x”—3x i(n—i—l Jan+1z" Zan =
n=0 n=0
Before proceeding, write
2 i (n+2)(n+ apiz2™ = i n(n — 1)a,z"
n=0 n=2

and
o0 o0
x Z (n+ Daypi2™ = Z napx".
n=0 n=1
It follows that
6as — ag + (—4a; + 18a3)x+

+ Z n+2)(n+ 1apto —n(n — a, —3na, —ay] 2™ =0.

n=2
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We obtain as = a¢/6, 2a3 = a1/9, and
3(n+2)apt2=Mn+a,, n=0,1,2,....
The indices differ by two, so for k =1,2,...

a o (2/€ — 1)(12]@,2 . (2k — 3)(2]{7 - 1)a2k,4 - - 3-5... (2k — 1) aop
RTUTTR(RK) T 32(2k—2)(2k) T 3F-2-4.. . (2k)
and
a - (2]@)&2]6,1 - (2k - 2)(2]?)0,2]6,3 o - 2:-4-6... (Qk) ay
T B02k+1) RRk—1)(2k+1) T 3%.3.5...(2k+1)°
Hence the linearly independent solutions are
N Y = 3-5...2n— 1)z
=14+ — 4+ — 4+ — =1
n@) =1+ g +or gt +nzl 304, (2n)
203 8x°  16x7 2-4-6...(2n) gt
va(@) =+ =g+ et or '_z+¥13n-35 2n+1)

(c¢) The Wronskian at 0 is 1.

12.(a,b,d) Let y = ag + a1z + agz? + ... + a2 +.... Then

y' = Z na,z" ! = Z (n+ Dagy12”
n=1 n=0
and
y" = Z n(n —1)a,az™ 2 = Z (n+2)(n+ api22™.
n=2 n=0
Substitution into the ODE results in
(1—x) Z (n+2)(n+1apioz™ +x Z (n+ Dappi12™ — Z anz" =0
n=0 n=0 n=0
Before proceeding, write
x Z (n+2)(n+ 1)apoz™ = Z (n+1)napprz”
n=20 n=1
and
oo
xZ(n—i—l pyp1" Znana:
n=0 n=1

It follows that

2a9 —ag + Z [(n+2)(n+ anta — (n+ D)nanyr +nay, —ay)z™ = 0.
n=1

We obtain as = ag/2 and
n+2)(n+1ape — (n+ Dnaper + (n—1)a, =0
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for n=0,1,2,.... Writing out the individual equations,

3-2a3—2-1as =0
4-3a4—3-2a3+ay=0
5-4das —4-3a4+2a3=0
6-5a6 —5-4a5+3a,=0

The coefficients are calculated successively as az = ao/(2-3), a4 = a3/2 — as/12 =
ap/24, a5 = 3a4/5 — a3/10 = ag/120, .... We can now see that for n > 2, a, is
proportional to ag. In fact, for n > 2, a, = ag/(n!). Therefore the general solution

18
o (Z0£L'2 a()SCS a0$4
Yy =ag+ a1+ 21 + 30 + I

Hence the linearly independent solutions are ys(x) = z and

oo :L’n i
yi(r) =1+ Z Pl
n=2
(¢) The Wronskian is e®(1 — z). At x =0 it is 1.
13.(a,b,d) Let y = ag + a1z + a2® + ... + a,z™ + .... Then

oo o
y' = Z nanx" "t = Z (n+ 1apy12"

n=1 =0

3

and

M8

y" =Y nn—Da,a"? = 3 (n+2)(n+ Dag 2"
n=2

3
Il
<)

Substitution into the ODE results in
o0 o0 o0
2 Z (n+2)(n+Day22" + Z (n+ Dayp12™ +3 Z anz™ =0.
n=~0 n=0 n=0

First write

o0 (o)
x Z (n+ Daypi2™ = Z napx".

n=0 n=1

We then obtain

dag + 3ap + Z 2(n+2)(n+ 1)ante +nay +3a,]2" =0.

n=1
It follows that ag = —3ag/4 and

2(n+2)(n+ Dapi2+ (n+3)a, =0
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for n =0,1,2,.... The indices differ by two, so for k=1,2,...

_ (2](3 + l)agk_z . (2](1 — 1)(2]€ + l)agk_4
2(2k — 1)(2k)  22(2k — 3)(2k — 2)(2k — 1)(2k)

-~ (—1)*3-5 ... (2k +1) u

B 2k (2k)! o

Q2 =

nd
’  (2k+2)agg-1 (2k)(2k + 2)ask_3

G2k T T@k) 2k + 1) | 22(2k — 2)(2k — 1)(2k)(2k + 1)

_ (=1)F4-6... (2k)(2k + 2)

2F (2 + 1)!

aj .

Hence the linearly independent solutions are

yi(z) =1- Zﬂ + 3%:54 - @mﬁ +...= ,20 (—1)”325(2n)('2n i 1)x2”

B 1, 1 5 1 . _ ~ (—1)"4-6...(2n+2) 4.4
yQ(l')—l’*g.’E +%x ~ 570% +...fx+n;1 37 @n 1 1] T .
(¢) The Wronskian at 0 is 1.

15.(a) From Problem 2, we have
yi(x) = 720 ;2; and  ya(z) = ni;) M ~

Since ap = y(0) and a; = y’(0), we have y(x) = 2y;1(z) + yo(z) . That is,

1 1 1 1
y(x):2+x+x2+§x3+1x4+ﬁ$5+ﬂ$6+~--

The four- and five-term polynomial approximations are

pa=2+x+2>+2%/3 and ps =2+ + 2 +2%/3 + 21 /4.
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(c) The four-term approximation p4 appears to be reasonably accurate (within 10%)
on the interval |z| < 0.7.

17.(a) From Problem 7, the linearly independent solutions are

n 2n n 2n+1
—14—2135 )andy2 —x+2246 o)
Since ap = y(0) and a; = y’(0), we have y(z) = 4y1(x) — y2(x). That is,

1 4 1 4
y(x):4—x—4x2+§x3+§x4—§x571—5x6+...-

The four- and five-term polynomial approximations are

1 1 4
p4:4—x—4x2—|—§x3, andp5:4—x—4x2+§x3+§m4.

(¢c) The four-term approximation p4 appears to be reasonably accurate (within 10%)
on the interval |z| < 0.5.

18.(a) From Problem 12, we have
o0 xn
91(55):1‘*‘25 and  ya(z) ==.
n=2
Since ap = y(0) and a; = y’(0), we have y(z) = —=3y1(x) + 2y2(z). That is,
3 1 1 1
— 349, 22 L3 14 1.5 1
y() = =3+ 20— go¥ = 5a® — gal — e’ — g+
The four- and five-term polynomial approximations are
3 1 3 1 1
D4 :—3+2zf§x275z and ps = —3+2xf§1:2—§x3—§:c4.
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(¢) The four-term approximation p4 appears to be reasonably accurate (within 10%)
on the interval |z| < 0.9.

20. Two linearly independent solutions of Airy’s equation (about xg = 0) are

x3n
—1
@) +n§::12-3 L Bn-1)3n)
x3n+1

x):x+§13.4,,,(3n)(3n+1)-

Applying the ratio test to the terms of y;(z),

|2-3...(3n — 1)(3n) 3" *3| _ 1 3
lim = lim |z|”=0.
n—00]2:-3...3n+2)B3n+3)x3?| n—ooo (3n+1)(3n+2)(3n+3)
Similarly, applying the ratio test to the terms of ys(z),
|3-4...(3n)(3n + 1) a3n+4| , 1 3
lim |z]” =0.

lim
n—oo|3-4...(3n+3)(3n+4) :c3”+1| n—oo (3n+2)(3n + 3)(3n + 4)

Hence both series converge absolutely for all x.

21. Let y=ap + a1z +asx®> + ... +a,2” +.... Then

0 00
yl = Z nanx Z TL+1 (Ln+1$

n=1 n=0

and
o0

o
Z (n —1)a,z" 2 = Z(n+2)(n+l)a7l+2x”.

= n

(=)

Substitution into the ODE results in

o0

Z (n+2)(n+1)ap2 ™ — 22 Z (n+1app12™ + A Z anz™ =0.

n=0 n=20 n=0
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First write

o0 (o)
x Z (n+ Daypi2™ = Z napx".

n=0 n=1

We then obtain

o0
2a0 + Nag + Z [(m+2)(n+ Daptz —2na, + Aay] 2" =0.

n=1
Setting the coefficients equal to zero, it follows that
an+42 = —(2n ) Qn
(n+1)(n+2)
for n =20,1,2,.... Note that the indices differ by two, so for £k =1,2,...
(4k —4 — Naogr—2 (4 —8 — \)(4k —4 — Naog_4

azk =

(2k—1)2k  (2k —3)(2k — 2)(2k — 1)2k
704ﬁA.“Qf4h+&Mf4k+®
- (2k)! do-
and
4k —2— Nagp_1  (4k — 6 — \)(4k — 2 — Nasy_3
GR T TR+ 1) (2k - 2)(2k — 1)2k(2k + 1)
_04ﬁ(A—®.”Q—4k+®Q—4h+%a
(2k +1)! L

Hence the linearly independent solutions of the Hermite equation (about xg = 0)

are

A, AA=4) , AMA—4HOA-8) 4

y1(xz) = fazer T Gl x
A—2 A=2)(A—06) A=2)(A—=6)(A—10)
e i T TR 71 i
(b) Based on the recurrence relation
(2n —A)
Q. = Qnp
T+ 1)(n+2)

the series solution will terminate as long as A is a nonnegative even integer. If
A = 2m, then one or the other of the solutions in part (b) will contain at most
m/2+ 1 terms. In particular, we obtain the polynomial solutions corresponding to
A=0,2,4,6,8,10 :

A=0 | y(z)=1

A=2 | plr) =2

A=4 | y(z)=1-22°

A=6 | yo(z) =2 —22%/3

A=8 | yi(z) =1—42° + 42*/3
A=10 | yo(z) = o — 423 /3 + 42° /15
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(c) Observe that if A =2n, and ag = a1 =1, then

g2n ... (2n —4k 4+ 8)(2n — 4k + 4)
(2k)!

azr = (71)

and
s (2n—2)...(2n—4k+6)(2n — 4k +2)
(2k +1)! '

for k=1,2,... [n/2]. Tt follows that the coefficient of ™, in y; and yo, is

—1)REE for n =2k
an_{( Vay for

azry1 = (—1)

k

(71)’“7(24,6_&!)! for n=2k+1

Then by definition,

[ @) =
H"(x){< ot 2 B )

(—1)* (2,5)1/( ) for n =2k
= (-1 )k% ya(x) for n =2k+1

Therefore the first six Hermite polynomials are

Ho(fﬁ) =1

H1 (.13) =2z

Hy(z) = 422 — 2

Hg(x) = 8 — 12z

Hy(x) = 162" — 4822 + 12

Hs(z) = 322° — 1602° + 120z

24. The series solution is given by
24 6 28

=1l—-a?4+ "= -4

y(@) Y% T30 "0
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\ -

T T T 1
-2 -1 1 2
x
-1 4

27. The series solution is given by

1,4 1,8 $12

A
y(@) 12 672 sstod T

f T T 1
-2 1 2
x
—0.2

28. Let y =ag + a1z +asx®>+... +a,2" +.... Then

0o
y/ _ 2 :nanxn—l _

n=1 n=0

M2

(n+ 1Dapy12"

and

(n+2)(n+ apy22™.

M8

y" = Z n(n —1a,z" 2 =

n=2 n=0

Substitution into the ODE results in
(1—x) Z (n+2)(n+ Dapi22™ + Z (n+ Dapyia™ —2 Z apx” =0.
n=0 n=0 n=0

After appropriately shifting the indices, it follows that

oo
2a9 — 2a0 + Z [(m+2)(n+ Dapt2 — (n+ D)napys +nay, —2a,] 2™ =0.

n=1
We find that as = ag and
n+2)(n+1apt2 — (n+ Dnapir + (n—2)a, =0
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for n =1,2,.... Writing out the individual equations,
3-2a3—2'1a2—a1:0

4-3a4—3-2a3=0

5-4das —4-3a4 +a3=0

6-5a6 —5-4a5+2a4 =0

Since ag = 0 and a; = 1, the remaining coefficients satisfy the equations
3-2a3—-1=0
4-3a4—3~2a3=0
5-4da5 —4-3a4+a3=0
6-5a —5-4a5+2a,=0

That is, a3 = 1/6,a4 = 1/12, a5 = 1/24, ag = 1/45,.... Hence the series solution
of the initial value problem is

_ 1 3 1 4 1 5 1 6 13 7
y(o) =@+ ot + at + o T ot te

e
W

2. Let y = ¢(x) be a solution of the initial value problem. First note that

"

y" = —(sin 2)y’ — (cos x)y.
Differentiating twice,

n

y"" = —(sin z)y"” — 2(cos x)y’ + (sin z)y
yW = —(sin 2)y"" — 3(cos x)y" + 3(sin z)y’ + (cos x)y .

Given that ¢(0) = 0 and ¢'(0) = 1, the first equation gives ¢”(0) = 0 and the last
two equations give ¢”’(0) = —2 and ¢*)(0) = 0.
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4. Let y = ¢(x) be a solution of the initial value problem. First note that

"o_

y" = -2y’ — (sin 2)y.
Differentiating twice,
y" = —x?y" — (22 +sin z)y’ — (cos z)y
yW = —22y"" — (4z +sin z)y” — (24 2cos x)y’ + (sin z)y.
Given that ¢(0) = ap and ¢’(0) = a1, the first equation gives ¢”(0) = 0 and the
last two equations give ¢’”’(0) = —ag and ¢ (0) = —4a;.

5. Clearly, p(z) = 4 and ¢(x) = 6z are analytic for all 2. Hence the series solutions
converge everywhere.

8. The only root of P(z) = x is zero. Hence ppin = 1.
12. The Taylor series expansion of e”, about o =0, is
(oo}

>

n=20

Let y = ag + a1z + agx® + ... + an,a™ + . ... Substituting into the ODE,

Z ::::] [Z(”+2)(”+1)an+25€” +x Zoanx":O.

n=0 n=0

First note that

8

n
! .

3

o o0
T E apx”™ = E an12" = agx + a1z’ +asx® + ...+ an_1z" + ... .
n=0

n=1

The coefficient of ™ in the product of the two series is

1
cn:2agg—|—6a3 '+12a4 '—|—...

1
(n—1) (n—2)
oot (n+Dnansr + (n+2)(n+ Dapto .
Expanding the individual series, it follows that
2a5 + (2a3 + 6a3)x + (ag + 6az + 12a4)2* + (az + 6az + 12a4 + 20as)x> + . ..
...+a0m+a1m2+a2x3+... =0.

Setting the coeflicients equal to zero, we obtain the system 2as = 0, 2as + 6a3 +
ap =0, as + 6az + 12a4 + a1 =0, as + 6az + 12a4 + 20a5 + a3 =0, .... Hence the
general solution is

3 4 5 6

z x T
y(x) = ag + a1 —aog + (ag —al)ﬁ + (2a1 — ap) —ap —2a1)——+....

w3 120
We find that two linearly independent solutions (W (y1,y2)(0) = 1) are

2t
) =1-—+—=——+...
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z* 25 b

yo(z) =z — 273 "0

Since p(z) = 0 and ¢(z) = xe™* converge everywhere, p = 0o

13. The Taylor series expansion of cos x, about zg =0, is

o —1)g2n
COS *r = Z ((2)”/)'

n=0

Let y = ag + a12 + asx® + ... + an,x™ + .... Substituting into the ODE,

x© nx2n > >
[Z((;)n)' [Z(n+2)(n+1an+2x +Znan *22007@'”:0

n=0 n=0 n=1

The coefficient of ™ in the product of the two series is
¢n = 2a2b, + 6asb,—1 + 12a4by, o + ... + (n + D)nay4101 + (n + 2)(n + 1)any42bo,
in which cos = by + by + bgx? + ...+ b,x™ +.... It follows that

2@2 — 2@(] + Z cnx" + Z (TL — 2)anx" =0.

n=1 n=1
Expanding the product of the series, it follows that
2a5 — 2ag + 6azr+(—as + 12a4)x? + (—3az + 20as)x> + . ..
..—a1x+a3x3—|—2a4x4+...:0.

Setting the coefficients equal to zero, as —ag =0, 6ag —a; =0, —as + 12a4 =0,

—3a3 + 20a5 + a3 =0, ... . Hence the general solution is
(x)*a+am+am2+ax—3+a—4+a—5+ax—6+a£+
V¥ =0T MT T+ do g 9070 T Mg T 0720 T MEe0 T

We find that two linearly independent solutions (W (y1,y2)(0) = 1) are

4 1‘6

y1( )—1+3’1 +*+§0+
$3 JI5 JI7

ve(w) =wt g+ g5t e T

The nearest zero of P(x) = cos x is at © = +7/2. Hence pin = 7/2.

14. The Taylor series expansion of In(1+ z), about o =0, is

oo ( 1)n+1zn

In(1+2) = Z%

n=1
Let y = ag + a12 + asx® + ... + a,x™ + .... Substituting into the ODE,

D

nn

] Z n+2)(n+ a2 2"



5.3

149

+

0 ( n+1 oo
Z 1 (n+ Dapp12" —x Zan =0.
n n=0

n=1 —0
The first product is the series
2a5 + (—2ay + 6a3)x + (ag — 6az + 12a4)x* + (—ag + 6az — 12a4 + 20as)2> + ...
The second product is the series
a1z + (202 — a1/2)a:2 + (3az — az + a1/3)2® + (4ay — 3a3/2 + 2a2/3 — a1/4)333 +
Combining the series and equating the coefficients to zero, we obtain
2090 =0
—2a9 +6as+a1 —apg=0
12a4 — 6as + 3a2 —3a1/2 =0
20as — 12a4 + 9a3 — 3as + a1/3 =0

Hence the general solution is

(@) = a0+ + (a0 — an) s+ (2ag + an) oy ar e+ Gy a0) o+
Yy\r) = ap a1 an ail 6 Qo al 21 a1120 3 — Qg 120

We find that two linearly independent solutions (W (y1,y2)(0) = 1) are

1'3 1'4 1’6

_1 . -

nE)=1+-+5 -5t
() x3+x4+7x5+

T)=T— 4+ =+ —

Y2 6 24 120

The coefficient p(x) = €” In(1 + z) is analytic at zy = 0, but its power series has a
radius of convergence p = 1.

15. If y; = x and y» = 22 are solutions, then substituting y» into the ODE results
in
2 P(x) 4 22 Q(x) + 2°R(z) = 0.

Setting x = 0, we find that P(0) = 0. Similarly, substituting y; into the ODE
results in Q(0) = 0. Therefore P(z)/Q(x) and R(z)/P(z) may not be analytic.
If they were, Theorem 3.2.1 would guarantee that y; and yo were the only two
solutions. But note that an arbitrary value of y(0) cannot be a linear combination
of y1(0) and y2(0). Hence o = 0 must be a singular point.

16. Let y = ag + a1 + asx® + ... + apz™ + . ... Substituting into the ODE,

oo

Z(n—i—laon Zan =

n=0

That is,

> [+ anss — an] ™ = 0.
n=0
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Setting the coefficients equal to zero, we obtain

an
pi1 = ——
n+1 n+ 1
for n=0,1,2,.... It is easy to see that a, =ag/(n!). Therefore the general
solution is
z?2 a3
y(x)_a0[1+x++3)'+ :|_a0€w.

The coefficient ag = y(0), which can be arbitrary.

17. Let y = ap + a1 + azx? + ... + a,x™ + .... Substituting into the ODE,

o0 o0
Z(n+1)an+1x"—x Z apx” =0.
n=0 n=20

That is,

oo oo
Z (n+ a1 ™ — Z p12" =
n=0 n=1

Combining the series, we have

a; + Z [(n+ 1)apt1 — ap—1] 2" =0.

n=1

Setting the coefficient equal to zero, a1 = 0 and a1 = ap—1/(n+ 1) forn=1,2,....
Note that the indices differ by two, so for £k =1,2,...

o — a2k —2 _ a2k —4 _ _ ao
Tk T (2k—2)(2k) T 24 ... (2k)
and
agp+1 =0.

Hence the general solution is

31‘2 334 .T6 an 2
— v - /2
y(sc)—ao[l—l—2—1—222!—1—233!—4—...—&—2””!4—..}—aoe .

The coefficient ag = y(0), which can be arbitrary.

19. Let y = ag + a1z + asx® + ... + apz™ + . ... Substituting into the ODE,

(1-2a) Zn—i—lanHm Zanx”:O
= n=20
That is,

o0 o0 o0
E (n+ Dapyr 2™ E na,z" — E anpx” =
— n=0

n=1

Combining the series, we have

ap — ap + Z [(mn+1Dapt1 —na, —ay] 2™ =0.

n=1
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Setting the coefficients equal to zero, a; = a9 and a,41 = a, for n=0,1,2,....

Hence the general solution is

y@)=a [l+z+2”+2°+.. . +2"+.. ] =ao
The coefficient ag = y(0), which can be arbitrary.

21. Let y = ag + a1 + asx® + ... + a2 + .... Substituting into the ODE,

o

Z(n+1)an+1x"+x ianxnzl—i—x.

n=0 n=0
That is,
o0
Zn+1an+1x —l—Zan 12t =14z.
= n=1

Combining the series, and the nonhomogeneous terms, we have

(o)
(a1 — 1) + (2a2 +ag — 1)x + Z [(m+ Dapt1 +an—1] 2" =0.

n=2
Setting the coefficients equal to zero, we obtain a; =1, 2as +ag—1 =0, and

Qp—2
Up = — 5 n:3,4,....
n

The indices differ by two, so for k=2,3,...

I S (=) tay _ (=1)*(ao — 1)
2k (2k)  (2k—2)(2k) " 4-6...(2k) 2-4-6...(2k)°
and for k=1,2,...
- agg—1 agk—3 o o (*1)]C
a2k+1 = — = = ... = .
(2k+1)  (2k—1)(2k+1) 3.5...(2k+1)
Hence the general solution is
(m)—a +$+ﬂx2_£+a i_ﬁ.i_a LG_
i) = o 2 3 09291 T35 0933
Collecting the terms containing ag,
z? x? 28
y(m):ao |:1—2+222'_233'+:|
2 23 x? z° 8 x7
+[“z‘3‘22m+3.5+m‘3.5.7+ }

Upon inspection, we find that

2 3 $4 x5 .’EG 1.7

y(x):aoe_””2/2+ w+x——x——7+7+7—7+... .
2 3 222! 3.5 233! 3.5-7
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Note that the given ODE is first order linear, with integrating factor p(z) = e’ /2,
The general solution is given by

x
y(x) = e_x2/2/ e 2 dy + (y(0) — 1)6_:‘32/2 +1.
0

23. fa =0, then y1(z) =1. If « = 2n, then agy, =0 form >n+ 1. As aresult,

yi(x) =1
- 2"p(n—1)...(n—m+1D2n+1)(2n+3)...2n+2m —1) ,
_1’m m.
Fa ) '
a=0]|1
a=2|1-3z2
a=4[1-102%+ 2a*

If « =2n+1, then agmi1 =0 form>n+1. As a result,

ya(z) =
N z”: (_1)m2mn(n —D).(n=mADEn+3)2n+5)...CnA2m+ 1) g
= (2m + 1)!
a=1|=z
a=3 | z— %x?’
14 3 21
a=5 | z— S+ 2ad
24.(a) Based on Problem 23,
a=2|1-3z2? y (1) =-2
a=4|1-10z2+ L2t | y1(1) =3
Normalizing the polynomials, we obtain
PQ(Q’,‘) =1
Py(z) =—=+ §x2
? 22
3 15 35
P _ 2 v.2 4
(D=5 T
a=1 |z y2(1) =1
a=3|z—32° y2(1) = -2
a=5|z— S+ T | (1) =5
Similarly,
P(z)==x
Ps(x) = —gx + gx?’
1
Ps(x) = §5x - %x?’ + %x‘r’
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(¢) Po(x) has no roots. Pj(x) has one root at © =0. The zeros of Py(x) are at
x==+1/v3 . The zeros of P3(z) are x = 0,++/3/5 . The roots of Py(z) are given
by 22 = (15 +2v/30)/35, (15 — 21/30)/35. The roots of Ps(z) are given by z = 0
and 2% = (35 +2v/70)/63, (35 — 2/70)/63.

25. Observe that

IR BT
P =Y Zk,n_ s ().

But P, (1) =1 for all nonnegative integers n.

27. We have
2 n _ - ()" Fn! o
(@ -1 =3, Kln— k) "
k=0
which is a polynomial of degree 2n. Differentiating n times,

dn " (=) k!
Zo1)n S (2k)(2k — 1) ... (2k —n + 1)z
in which the lower index is u = [n/2] + 1. Note thatif n = 2m + 1, theny =m + 1.
Now shift the index, by setting kK = n — j. Hence

dn [n/2] (_1)‘771 .
y (@ -1 => m(2n —2))(2n—2j—1)...(n—2j 4+ 1)z" "%
j=0
[n/2]
n! Z QTL—QJ) 22
= (n— )5 1(n —25)! ’

Based on Problem 25,
dn

— )" =l 2"P,(z).
@ =) =l 2Py (0)
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e
S

29. Since the n + 1 polynomials Py, P;, ..., P, are linearly independent, and
the degree of Py is k, any polynomial f of degree n can be expressed as a linear
combination

fl@) =" axPi(z).
k=0
Multiplying both sides by P, and integrating,
1 n 1
/ F@)P(z)dz = > ay, / Pi(2) P (2)dz .
—1 k=0 —1

Based on Problem 28,

1
2
P, P, = .
/_1 1 (2) P () = 5
Hence
! 2
P = .
/_1 f(z) P (x)dx G am,

1. Substitution of y = =" results in the quadratic equation F(r) = 0, where F(r) =
r(r—1)+4r+2=17r?+3r+2. The roots are r = —2, —1. Hence the general
solution, for  #0,is y = ci 272 + cyz™!.

3. Substitution of y = =" results in the quadratic equation F(r) =0, where F(r) =
r(r—1)—3r+4=1?—4r+4. The root is r = 2, with multiplicity two. Hence
the general solution, for = # 0, is y = (¢ + ¢ In|z|) 22,

5. Substitution of y = 2" results in the quadratic equation F'(r) =0, where F'(r) =
r(r—1)—7r+1=17r%2—2r+1. The root is r = 1, with multiplicity two. Hence the
general solution, for x # 0, is y = (¢1 + ¢c2 In|z|) .

6. Substitution of y = (z — 1)" results in the quadratic equation F(r) =0, where
F(r) =72+ Tr +12. The roots are r = —3, —4. Hence the general solution, for
r#£ 1l isy=c (x—1)3+cp(x—1)""%

7. Substitution of y = 2" results in the quadratic equation F(r) = 0, where F(r) =
r?2 +5r — 1. The roots are r = —(5 & 1/29)/2. Hence the general solution, for

z#£0,isy=0c \x|_(5+@)/2 +co |m|_(5_m)/2.

8. Substitution of y = z" results in the quadratic equation F'(r) = 0, where F(r) =
72 —3r +3. The roots are complex, with r = (3 + i1/3)/2. Hence the general
solution, for x # 0, is

32 V3 32 . V3

y=c1 |z COS(T In |x|) + c2 |z sin(T In |z]).
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10. Substitution of y = (x — 2)" results in the quadratic equation F(r) = 0, where
F(r) = r? 4+ 4r + 8. The roots are complex, with r» = —2 + 2i. Hence the general
solution, for x # 2,isy = ¢1 (x — 2) "2 cos(2 In |2 — 2|) + co(z — 2) "2 sin(2 In |z — 2|).

11. Substitution of y = 2" results in the quadratic equation F(r) =0, where
F(r) =r? 4+ 17+ 4. The roots are complex, with r = —(1 + iy/15)/2. Hence the
general solution, for x # 0, is

—1/2

y=c |z| cos( In|z|) + 2 |:c|_1/2 sin( In |x]).

12.  Substitution of y = z" results in the quadratic equation F(r) =0, where
F(r) =72 —5r+4. The roots are r =1, 4. Hence the general solution is y =

c1x+02x4.

14. Substitution of y = 2" results in the quadratic equation F(r) =0, where
F(r) = 4r? + 4r + 17. The roots are complex, with r = —1/2 4+ 2i. Hence the
general solution, for > 0, is y = c¢; 27 /2 cos(2 In ) + co 27 /?sin(2 In ). Invok-
ing the initial conditions, we obtain the system of equations

1
c1 =2, —501 + 2¢co = —3.

Hence the solution of the initial value problem is

y(z) =227 % cos(2 In 2) — 2~ /?sin(2 In ).

As z — 0T, the solution decreases without bound.

15. Substitution of y = 2" results in the quadratic equation F(r) =0, where
F(r) =r* —4r + 4. The root is r = 2, with multiplicity two. Hence the general
solution, for x < 0, is y = (¢; + co In |z|) 2% Invoking the initial conditions, we
obtain the system of equations

c1 = 2, —201 — Cg = 3.
Hence the solution of the initial value problem is

y(r) = (2 -7 In |z]) 2°.
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0.5 4

We find that y(z) — 0Oasxz — 0.

18. We see that P(xz) =0 when x =0 and 1. Since the three coefficients have no
factors in common, both of these points are singular points. Near = = 0,

2x

lim wp(e) = lim e mq 7 = 2
lim 2%¢(z) = lim xQL =4.
z—0 z—0 ;CQ(]_ — x)Q

The singular point = 0 is regular. Considering x = 1,

. . 2x
ignl(x = Dp(z) = ilgll(x - l)m :

The latter limit does not exist. Hence z = 1 is an irregular singular point.

19. P(x) =0 when =0 and 1. Since the three coefficients have no common
factors, both of these points are singular points. Near x = 0,

I (z) = 1i T —2
fimp e p(e) = by o sy

The limit does not exist, and so z = 0 is an irregular singular point. Considering
z=1,
Tz —2

ilml(x — Dp(z) = ilml(x — 1)m =1.
—3x

. _ 2 _ . _ 2 _

Clnrnl(a: 1)%q(z) = ilml(x 1) 7x2(1 ) 0.

Hence x = 1 is a regular singular point.

20. P(x) =0 when z =0 and +£1. Since the three coefficients have no common
factors, both of these points are singular points. Near x = 0,

lim zp(z) = lim =

z—0 a0 p3(1 — 22)
The limit does not exist, and so x = 0 is an irregular singular point. Near z = —1,
2
lim (. + Dp(z) = lim (x +1) 54— = —1.

rz——1 r——1 LES(]. —:L'2)
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lim (z 4 1)%q(x) = lim (x + 1)2# =0.

r——1 z——1 23(1 — x2?)

Hence © = —1 is a regular singular point. At z =1,

. , 2
ilinl(m — Dp(x) = ilgll(ﬂ? - 1)m —1.
lim ( — 1)%q(z) = lim (¢ — 1)* > = 0.

z—1 z—1 x?’(l — x2)

Hence x = 1 is a regular singular point.

22. The only singular point is at z = 0. We find that

x
li =l —=1.

z? —v?
lim z2¢(x) = lim 2? T = —v2.
z—0 r—0 x

Hence z = 0 is a regular singular point.

23. The only singular point is at x = —3. We find that

. . —2x
wl_l}lllg(x +3)p(z) = xl_l)II_lg(l‘ + 3):1: T3 = 6
fim (2 + 3)%(z) = lm (z+3)? =2~
Jim (o4 3P(@) = Jim (@43 S50 =0
Hence x = —3 is a regular singular point.
24. Dividing the ODE by x(1 — 22)3, we find that
2

1
= d = .
p@) = Ta oy wd i) = e
The singular points are at =0 and 1. For = = 0,
1
=1.

mp(@) = lime =%

2
=0.

li 2 — ] 2
limy 2%q(x) = Jimy (1 +2)2(1 - 2)3

Hence z = 0 is a regular singular point. For x = —1,
1 1

O |

lim (z+41)p(z) = lim (z+ Um

z——1 rz——1
2

. 2 T 2
Hence x = —1 is a regular singular point. For x =1,
1 1

1
1

lim (x — )p(z) = lim (z — 1)m =-3-

rz—1 rz—1
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. 3 2
e = DPal) = B = 0 s

The latter limit does not exist. Hence = = 1 is an irregular singular point.

25. Dividing the ODE by (z + 2)%(z — 1), we find that
2
(x+2)(z—1)"
The singular points are at x = —2 and 1. For x = —2,

3

Jim (o + 2)pla) = lim (o +2) 7o

p(x) = m and ¢(v) =

The limit does not exist. Hence = —2 is an irregular singular point. For z =1,

lim (z — D)p(z) = lim (z — 1) 5

z—1 z—1 (a:+2)2 =0.

. . —2
lim (2 — 1)%q(x) = lim (z — 1) EES TSV

Hence z =1 is a regular singular point.

26. P(x) =0 when z =0 and 3. Since the three coefficients have no common
factors, both of these points are singular points. Near x = 0,

I (@) = I r+1 _1
im0 P = T B3 T 3
2. =2 _y.

. 2 T
liy o) = i a” s

Hence x = 0 is a regular singular point. For x = 3,

. . z+1 4
T (+ = 3)p(w) = lim =z — 3)m =3
lim (2 — 3)2¢(2) = lim (2 — 3)2——>— =0
z—3 z—3 x(g — (E) ’

Hence x = 3 is a regular singular point.

27. Dividing the ODE by (22 + z — 2), we find that

z+1 2
p(z) = (z+2)(z—1) and - q(z) = (x+2)(x—1)"
The singular points are at x = —2 and 1. For x = -2,
z+1 1

lim (z +2)%¢(z) = lim 2z +2) =

r——2 B z—=—-2 x—1
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Hence x = —2 is a regular singular point. For x =1,
Jinye ) = Jiy 0 = 5
li (o~ 1g(a) = iy 5= o,

Hence = = 1 is a regular singular point.

29. Note that p(x) =1In|z| and ¢(z) =3z. Evidently, p(z) is not analytic at
zo = 0. Furthermore, the function xp(x) =« In|z| does not have a Taylor series
about g = 0. Hence x = 0 is an irregular singular point.

30. P(x) =0 when x =0. Since the three coefficients have no common factors,
z = 0 is a singular point. The Taylor series of e* — 1, about z = 0, is

e —l=a+2?/2+2%/6+....

Hence the function x p(z) = 2(e® — 1)/z is analytic at = 0. Similarly, the Taylor
series of e™" cos x, about x = 0, is

e cosx=1—a+a%/3—at/6+....

The function z2g(z) = =% cos x is also analytic at z = 0. Hence x = 0 is a regular
singular point.

31. P(x) =0 when x =0. Since the three coefficients have no common factors,
x = 0 is a singular point. The Taylor series of sin x, about = 0, is

sinz =2 —2°/3! +2° /5 — ...

Hence the function zp(x) = —3sin x/x is analytic at x = 0. On the other hand,
q(x) is a rational function, with

1+ 22
li 2 — I 2
2y =

=1.

Hence z = 0 is a regular singular point.

32. P(x) =0 when £ =0. Since the three coefficients have no common factors,
x = 0 is a singular point. We find that

lim 2 p(z) = lim 7~ = 1

iy eple) = e =1
Although the function R(x) = cot z does not have a Taylor series about =0,
note that z2q(z) =z cot x =1 — 22/3 — x4 /45 — 225/945 — .. .. Hence x =0 is a
regular singular point. Furthermore, q(x) = cot z/2% is undefined at x = £ nrw.
Therefore the points x = +n7 are also singular points. First note that

lim (zFnmp(z)= lim (z7F mr)l =0.

r—+nm r—+tnm x
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Furthermore, since cot x has period w,

1

) = ot 2/ = cot(w F nm)/a = cotla F nm)

Therefore

(x F nm)?q(z) = (x F nw)cot(z F n) [(x(:s;ﬁ)mr] .

From above,
(x F nm)cot(x F nr) =1— (z F nr)?/3 — (x F nw)*/45 — ... .

Note that the function in brackets is analytic near x = £ nn. It follows that the
function (z F nm)%q(x) is also analytic near x = +nw. Hence all the singular
points are regular.

34. The singular points are located at © = +nw, n =0,1,.... Dividing the ODE
by z sin z, we find that x p(z) = 3 csc x and z%¢q(x) = 2° csc . Evidently, z p(z)
is not even defined at = 0. Hence x = 0 is an irregular singular point. On the
other hand, the Taylor series of z csc x, about z =0, is

rescx=142%/6+ 72360+ ... .
Noting that csc(z F nw) = (—1)"csc z,
(x F nm)p(x) =3(—1)"(z F nnm)csc(x F nw)/x

— 3(—=1)"(z T nr)cse(z T n) [W;im] .

It is apparent that (x F nm)p(x) is analytic at & = £ nw. Similarly,
(x F nm)%q(z) = (x F nm)’csc z = (=1)"(z F nm)?csc(z F nr),

which is also analytic at x = +nmw. Hence all other singular points are regular.

36. Substitution of y = z" results in the quadratic equation 72 —r + 3 =0. The

roots are
1+ +1—-45
r=—\
2

If 8> 1/4, the roots are complex, with r; 5= (1 £ i/48 —1)/2. Hence the
general solution, for x # 0, is

1 1
y=c |z|"? cos(5 /46 — 1 Inz]) + 2 || */2 sin(; /45 — 1 Ina).

Since the trigonometric factors are bounded, y(z) — Oas @ — 0. If 5 =1/4, the

roots are equal, and
1/2 1/2

y=c1 |z|’" 4+ co |2] In |z| .

Since lim, 0 /]z| In |z| =0, y(z) — Oas z — 0. If 8 < 1/4, the roots are real,
with 12 = (1 £ /1 —45)/2. Hence the general solution, for z # 0, is

1/24+/1—45/2 1/2—/1—43/2

y=ci |z + ca |7
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Evidently, solutions approach zero as long as 1/2 — /1 —45/2 > 0. That is,
0<B<1/4.

Hence all solutions approach zero for 8 > 0.

37. Substitution of y = 2" results in the quadratic equation 72 —7 —2 =0. The

roots are 7 = —1, 2. Hence the general solution, for z # 0, is y = c;z ™! + ¢y 2.

Invoking the initial conditions, we obtain the system of equations
c1+co =1, —c1+2c0 =7
Hence the solution of the initial value problem is

2 - 1
y(z) = 3 Tl g J?:’y z2.

The solution is bounded, as z — 0, if v =2.

38. Substitution of y = z" results in the quadratic equation 7% + (v — 1)r +5/2 =
0. Formally, the roots are given by

|—atva?=9a=9 l-a+,/(a-1-vVi0)(a—-1+VI0)
"= 2 - 2

(i) The roots will be complex if |1 — | < +/10. For solutions to approach zero, as
z — oo, weneed —v10 <1—a<0.

(ii) The roots will be equal if |1 — & = +/10 . In this case, all solutions approach
zero as long as 1 —a = —10 .

(iii) The roots will be real and distinct if |1 — a| > +/10. It follows that
l-a+ Va2 -2a-9

rmaz - 2

For solutions to approach zero, we need 1 —oa + Va2 —2a—9 <0. That is,
1 —a < —V/10 . Hence all solutions approach zero, as & — 0o, as long as a > 1.

42. x =0 is the only singular point. Dividing the ODE by 222, we have p(z) =
3/(2x) and gq(x) = —z72(1 + x)/2. It follows that

liyopfe) = Iy = 5

I o= (+ax) 1

lim 2%q(x) = o™ —55— =%
so z = 0 is a regular singular point. Let y = ag + a1z + asx® + ...+ apz”™ + .. ..
Substitution into the ODE results in

22° Z (n+2)(n+1)ap2 2™ + 3 Z (n+ 1Dapp12"” — (1+x) Z apz” =0.
n=0

n=0 n=0
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That is,

oo

2 Z nn—Dapz™ +3 i na,xr" — i apx” — i ap_12" =0

n=2 n=1 n=0 n=1

It follows that

—ag + (2a1 — agp)z + Z 2n(n —1Da, + 3na, —ap —ap—1]2” =0.

n=2
Equating the coefficients to zero, we find that ag =0, 2a; —ag =0, and
2n—1)(n+1a, =apn-1, n=2,3,....

We conclude that all the a,, are equal to zero. Hence y(x) = 0 is the only solution
that can be obtained.

44. Based on Problem 43, the change of variable, x = 1/£, transforms the ODE
into the form

d*y
4 34y _
d§2+§d€+y 0.

Evidently, £ = 0 is a singular point. Now p(§) = 2/¢ and ¢(§) = 1/£*. Since the
value of limg _, £2¢(€) does not exist, £ =0 (z = 0o) is an irregular singular point.

§

46. Under the transformation z = 1/¢, the ODE becomes

1. d* 3 1 21| dy _
¢ (1—?2)@‘5‘ 2€ (1—?)4'25 R d§+ ala+1)y=0,
that is,
3
(€ -5 +20Y b oo+ 1y =0.
Therefore £ = 0 is a singular point. Note that
2 ala+1)
It follows that 2
lim €p(€) = lim &g =0,
lim €29(6) = lim 22O FD 0 11).

£—0 £—0 52(52 - 1)

Hence £ =0 (z = c0) is a regular singular point.

48. Under the transformation z = 1/¢, the ODE becomes

d%y dy
g4d£2 [2§3+2§2§] %—F)\y—o
that is,
§4d Y +2(§3+§)—+/\y_0

ez dé
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Therefore £ = 0 is a singular point. Note that

2062 +1 A
p(€) = (553” and q(6) = 5

It immediately follows that the limit lime o & p(€§) does not exist. Hence £ =0
(z = 00) is an irregular singular point.

49. Under the transformation z = 1/¢, the ODE becomes

d%y dy 1
- 1282y =0.
3 izt § rra
Therefore £ = 0 is a singular point. Note that
2 -1
p(§) = 3 and ¢(¢) = ra
We find that 5
but

(=D
&

The latter limit does not exist. Hence £ = 0 (z = 00) is an irregular singular point.

lim £%(¢) = lim ¢

1.(a) P(x) =0 when x = 0. Since the three coefficients have no common factors,
z = 0 is a singular point. Near z = 0,

. . 1

2y ep) = e, =5
lim 2%¢(z) = lim le =0.
z—0 z—0 2

Hence z = 0 is a regular singular point.

(b) Let

o0
y=a"(ap + a1z +ar® + ... +az" +...) = Za,&;“‘”.

n=20

Then

y/ — Z(r+n)an$r+71—l
n=0
and

y" = Z (r+mn)(r+n—1a,a" 2

n=0
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Substitution into the ODE results in

2 Z (r+n)(r+n—1a,z" "1 + Z (r+n)a,z™ "t 4 Z anz" T =0.

n=0 n=20 n=0

That is,

227“+n(r+n—1 T+"+Zr+n T+"+§:an—2xr+"=0-

n=20 n=2

It follows that
ap [2r(r — 1) +r]z" +ay [2(r + )y + 7+ 1] 2"

—I—Z (r+n)(r+n—1a, + (r+n)a, +a, 22" =0.

n=2

Assuming that ag # 0, we obtain the indicial equation 2r%2 —r =0, with roots
r1 =1/2 and ro = 0. It immediately follows that a; = 0. Setting the remaining
coefficients equal to zero, we have

—ap—2

(r+n)2(r+n)—1]"°

n=23,....

Ay =

(c) For r = 1/2, the recurrence relation becomes

—O0p—2
n(l+2n)’

Since a; = 0, the odd coefficients are zero. Furthermore, for £k =1,2,...,

=2,3,....

Ay =

—Qgk—2 Qg4 _ (—=1)kag

2k(1+4k)  (2k —2)(2k)(4k —3)(4k +1)  2Fk!5-9-13 ... (4k+ 1)~

Az =

(d) For r = 0, the recurrence relation becomes

—ap—2
n = N\ :2,3,... .
“ n(2n —1) "

Since a; = 0, the odd coefficients are zero, and for k =1,2,...,

—Qgk—2 agk—4 _ (—=1)kag

T oK@k —1)  (2k —2)2k)(4k —5)dk —1)  2FKI3.7-11...(4k 1)

The two linearly independent solutions are

( 1)k 2k
yi(z) = Vo 1+ngkt5 9-13...(4k +1)

» (1)k 2k
y2(2) +ngk|3711 (4k —1)°

3.(a) Note that xp(x) = 0 and 2?¢(z) = =, which are both analytic at z = 0.
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(b) Set y = 2"(ap + a1z + a2z® + ... + a,a™ + ...). Substitution into the ODE re-
sults in
r+n)(r+n—1a,x" 7"+ ap, """ =0,
1 r+n—1 r+n 0
n=0 n=0

and after multiplying both sides of the equation by x,

Z (r+n)(r+mn—1a, "™ + Z an_12" " =0.
n=0 n=1
It follows that
o0
ag [r(r —1D]a" + Z [(r+n)(r+n—1a, +a,_1]2" ™™ =0.
n=1

Setting the coefficients equal to zero, the indicial equation is r(r —1) = 0. The
roots are 71 = 1 and ro = 0. Here ry — r9 = 1. The recurrence relation is

—0n-1 1.9
ay = , n=1,2....
(r+n)(r+n-1)
(¢c) Forr=1,
fnol 1,2
_ n—
n(n+1)’ T
Hence forn > 1,
o = —On-1 Ap—2 _ _ (=D)"a0
"Tan+1) (n—1Dn2(n+1) 7 aln+ 1)

Therefore one solution is

n

R S G Vi
yi(z) == nz::o PICESVE
5.(a) Here xp(x) =2/3 and z%q(z) = x2/3, which are both analytic at z = 0.

(b) Set y = 2"(ap + a1z + azz® + ... + a,a™ + ...). Substitution into the ODE re-
sults in

3 Z (r+n)(r+n—1a,z" ™" +2 Z (r+n)a, " + Z a2 = 0.

n=0 n=0 n=0

It follows that
ao [3r(r — 1) 4+ 2r) 2" +ay [3(r + 1)r +2(r + 1)] 2"

+ Z B(r+n)(r+mn—1a, +2(r +n)a, +an_2]z" ™ =0.

n=2

Assuming ag # 0, the indicial equation is 3r? — r = 0, with roots r; = 1/3, ro = 0.
Setting the remaining coefficients equal to zero, we have a; =0, and

) B ) 1)

n=23....
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It immediately follows that the odd coefficients are equal to zero.

(c) For r=1/3,

So for k=1,2,...,

g — 022 a2k—4 _ (=1)*ag
F T ok(6k+1)  (2k —2)(2k)(6k —5)(6k+1) 2FkI17-13 ... (6k+1)°

(d) For r =10,
—ap—-2
n — — 1 = 2, g
“ n(3n —1) " 3
Sofor k=1,2,...,
don — —O2k—2 2k—4 _ (=1)*ag
F T ok(6k — 1) (2k—2)(2k)(6k — 7)(6k — 1) 28 kI5-11 ... (6k—1)

The two linearly independent solutions are

y1(93) :.131/3 14+ i (_l)k (Zj)k
A RT3 (6 1) 2

-1 i (=1)* 2%
y2(x) = +k:1 k15-11...(6k—1)(5) '

6.(a) Note that xp(z) = 1 and z%q(x) = x — 2, which are both analytic at z = 0.

(b) Set y = 2" (ag + a1z + asx® + ...+ ap,z™ + ...). Substitution into the ODE re-
sults in

Z (r+n)(r+n—1a,z" "+ Z (r+n)a, 2"
n=0 n=20

o o
+ Z anpr it — 92 Z anz™ T =0.
n=0 n=0

After adjusting the indices in the second-to-last series, we obtain

ag [r(r—1)+r—2]a"

+ Z [(T + n)(r +n— ]-)an + (T + n)an - 2(1n + Cl,nfl] {ET+n =0.

n=1

Assuming ag # 0, the indicial equation is r? — 2 = 0, with roots r = =+/2 . Set-
ting the remaining coefficients equal to zero, the recurrence relation is

—Qp—1

Note that (r+n)? —2=(r+n+v2)(r+n—2).

ap = n=12,....
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(c) For r =2,
—0p-1
ap=—""1_ p=1,2,....
n(n—l—?ﬁ)
It follows that
an = (=1)"a0 —1,2,....
a1 42v2)(2+2v2) .. (n+2v2) ] o
(d) For r = —/2,
—Qp—1
= —n=L p=12,...,
" n(n—2v2)
and therefore
_1)»
(=1)"ao n=12,....

-2V (2 - 2v2) .. (n—-2v2)

The two linearly independent solutions are

z) =zv2 3 (=1)"a”

h(@) = 1+HZ::1 n!(1+2\/2’)(2+2\/2’)...(n+2\/2’)]
Ve - (=1 a"

be(@) == Hﬂ; n!(l—Qﬁ)(Q—Qﬁ)...(n—Qﬁ)]'

7.(a) Here zp(xr) =1 — 2 and 2%q(z) = —x, which are both analytic at z = 0.

(b) Set y = 2"(ap + a1z + azz® + ... + a,a™ + ...). Substitution into the ODE re-
sults in

Z(rJrn)(rJrnf Day, "™ + (r 4 n)a, "1
n=20

n=0
o0 o0

- E (r+mn)a, 2" — E apx™ ™ =0.
n=0 n=0

After multiplying both sides by =z,

Z (r+n)(r+n—1a,z" "+ Z (r +n)a, 2"
n=0

n=0
o0 o0
- E (r+n)a, 2" — E apz" T = 0.
n=~0 n=0

After adjusting the indices in the last two series, we obtain

ag [r(r—1)+r]a"

+ Z [(r+n)(r+n—1)a, + (r+n)a, — (r+n)a,_1]z" T =0.

n=1
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Assuming ag # 0, the indicial equation is r? = 0, with roots r; = ro = 0. Setting
the remaining coefficients equal to zero, the recurrence relation is

(n—1

= , =1,2,....
=y "
(c) With r =0,
an =L =12,
n
Hence one solution is
2 n
B r x o
y1(l‘)—1+ﬁ+§++ﬁ+—€

8.(a) Note that xp(r) = 3/2 and z%q(x) = 22 — 1/2, which are both analytic at
z=0.

(b) Set y=a"(ap + a1 + azx® + ...+ a,x™ +...). Substitution into the ODE
results in

2 Z (r+n)(r+n—"1a, 2"+ 3 Z (r+n)a, "

n=0 n=0
oo o0
+2 g anpz T2 — E apz™t =0.
n=0 n=20

After adjusting the indices in the second-to-last series, we obtain

ap2r(r—1)+3r—1]2" + a1 2(r+ 1)r +3(r +1) — 1]

o0
+ Z 2(r+n)(r+n—1)a, +3(r+n)a, — an +2a,_2] 2" =0.
n=2
Assuming ag # 0, the indicial equation is 212 + 7 — 1 = 0, with roots r; = 1/2 and
ro = —1. Setting the remaining coefficients equal to zero, the recurrence relation

18
_2an72

(r+n+1)[2(r+n)-1]’
Setting the remaining coefficients equal to zero, we have a; = 0, which implies that
all of the odd coefficients are zero.

ap = n=23....

(¢) With r =1/2,
—204”,2
n = o\ :2,3,... .
“ n(2n + 3) "

So for k=1,2,...,

o — —a2k—2 A2k—4 _ (_1)kao
T k(Ak+3)  (k—Dk(Ak—5)(4k+3) k7-11 ... (4k+3)

(d) With r = -1,
_2an—2
n = ) =2,3,....
“ n(2n — 3) "
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So for k=1,2,...,

o — —agk—2 A2k —4 _ (_1)ka0
T k(k—3) (k- Dk(4k—11)(4k —3)  K'5-9... (dk—3)

The two linearly independent solutions are

! = 711 (4n +3)
y (.’t) -2 111 + i (_1)" 2n
2 e nl5-9 .. (4n—3)| "

9.(a) Note that zp(x) = —z — 3 and 2%g(z) = z + 3, which are both analytic at
z =0.

(b) Set y = 2"(ap + a1z + azz® + ... + a,a™ + ...). Substitution into the ODE re-
sults in

o0 o0 (o)
Z (r+n)(r+n—1a, 2" — Z (r +n)a, 2" -3 Z (r+n)a, "
n=0 n=0 n=0
o0 o0
+ Z apx" T 43 Z axz™ T =0.
n=0 n=0

After adjusting the indices in the second-to-last series, we obtain

ap [r(r—1) —3r 4+ 3]a”
+ Z [(r+n)(r+n—1Da, — (r+n—2)an_1—3(r+n—1a,]2""™ =0.
n=1
Assuming ag # 0, the indicial equation is 72 — 4r 4+ 3 = 0, with roots r; = 3 and
ro = 1. Setting the remaining coeflicients equal to zero, the recurrence relation is

(r+n—2)an—1

n — y =1,2,....
“ (r+n—1)(r+n-3) "
(c) With r =3,
Da,—
HZM, n=1,2,....
n(n+2)
It follows that for n > 1,
(4 1Dap1 Ap—2 _ 2ap
" oan+2) (m—-Dn+2) 7 nl(n+2)

Therefore one solution is

yi(z) = z®

—nt(n+2)

10.(a) Here zp(z) =0 and z?q(z) = 22 + 1/4, which are both analytic at z = 0.
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(b) Set y = 2" (ap + a1 + azx® + ... + a,x™ + ...). Substitution into the ODE re-
sults in
oo oo i 1 oo
r+n)(r+n—Da, " + apz" T 4 = apz™ =0.
4
n=20 n=20 n=20

After adjusting the indices in the second series, we obtain

1 1
an [r(r S+ 4} o +an [<r T 4} 2

o0
1
+ Z [(r +n)(r+n—1a, + 14t an_g} 2T =0.
n=2
Assuming ag # 0, the indicial equation is 72 — r + % =0, with roots 1 =1y = 1/2.
Setting the remaining coefficients equal to zero, we find that a; = 0. The recurrence
relation is

_4an—2
n — 5 =2.3,....
= ryam—12 "
(c) With r =1/2,
—ap—2
an = 2 , n=23,....

Since a; = 0, the odd coefficients are zero. So for k> 1,

don — —G2k—2 _ a2k—4 _ _ (_1)kao
kT2 2(k—12k2 T 4k(kN2
Therefore one solution is
_ e (71)77,1:277.
yi(z) = Vo |1+ nz::l I
12.(a) Dividing through by the leading coefficient, the ODE can be written as
2
1 z / _
1— 22 + 1—a27 0
Forz =1,
lim (2 — 1)p(x) = lim —— =
= lim (z — x) = lim ==
Po T p z—1 1 + 1 2
2
. _1\2 _ (1 —x)
0=y (o = 1%a(e) = iy S 0
For x = —1,
— lim (2 + )p(z) = 1 x 1
po= Jmem e = A e -1 2
2
L 9 .af(x41)
Hence z = —1 and x = 1 are regular singular points. As shown in Example 1, the

indicial equation is given by

r(r—1)+por+q =0.
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In this case, both sets of roots are 7 =1/2 and ro =0.

(b) Let t =2 — 1, and u(t) = y(t + 1). Under this change of variable, the differen-
tial equation becomes

t* +2t)0u” + (t + Du’ — ®u =0.

Based on part (a), t = 0 is a regular singular point. Set u =3 " a,t" ™. Sub-
stitution into the ODE results in

oo

S rn)(r+n—Dan ™" 423 (r+n)(r+n—1a,t" !

n=0 n=0

o0 oo oo
+ Z (r+n)a, " + Z (r+n)an t™ 7 —a? Z ant™ =0.
n=0

n=0 n=20

Upon inspection, we can also write

o0

o0 o0
1
g (r+n)2antr+”+2§ (r+n)(r+n—§)ant’“+nfl—a2 E ant™™ = 0.
n=20

n=0 n=0

After adjusting the indices in the second series, it follows that

aokmr—;ﬂf‘l

c- 1
+ Z {(7" +n)a, +2(r+n+1)(r+n+ §)an+1 — aQan} e — Q.

n=20

Assuming that ag # 0, the indicial equation is 272 —r = 0, with roots r = 0, 1/2.
The recurrence relation is

1
(r+n)2an—|—2(r+n—|—1)(r—|—n+§)an+1—a2an:0, n=0,1,2,....
With 7 =1/2, we find that for n > 1,

_4a? — (2n—1)? . [1—40%] [9—40?] ... [(2n — 1)? — 40?]

n = n-1= (-1 ’

“ mengy =Y 2n(2n + 1)! ao

With r9 =0, we find that forn > 1,

0 — a? —(n—1)2 oy = (—1) a(—a)[1-a?] [4—a?]...[(n—1)* — a?] a0
n(2n —1) nl-3-5...(2n—1)

The two linearly independent solutions of the Chebyshev equation are

yi(x) = |z — 1" <1+ DI R— )(9_33(2)54(1()2?_ D200 - 1)")

n=1

—a)(1-a?)(4—a?)...(n—1)2 - a?)
n!-3-5...2n—-1)

pole) =14+ 3 (-1 (e~ 1)

n=1
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13.(a) Here zp(z) = 1 — x and 22g(z) = Az, which are both analytic at # = 0. In
fact,
po=limzp(z) =1and gy = lim 2%q(x) =0.
z—0 z—0

(b) The indicial equation is r(r — 1) + r = 0, with roots r12 =0.

(c) Set
y=ap+ a1z +ax® +...+ax" +....

Substitution into the ODE results in

i n(n — Day z" ' + i na, " — i nay, " + A i anz” =0.
n=2 n=1 n=0 n=0
That is,
i nn+ Dap41 2™ + i (n+ Dap41 2" — i na, " + A\ i apx™ =0.
n=1 n=0 n=1 n—0

It follows that

a1 +Aag + Z [(n+1)2an+1—(n—)\)an] " =0.

n=1
Setting the coefficients equal to zero, we find that a; = —Aag, and
an = m_n%)\)an,l, n=23....
That is, for n > 2,
anzwan—l _ ()1 =XN)...(n—1-=X) a.

(nl)?

n2

Therefore one solution of the Laguerre equation is

y1(x):1+z (—A)(l—kg...(n—l_)\)mn.

n!)?

n=1

Note that if A =m, a positive integer, then a, =0 for n > m + 1. In that case,
the solution is a polynomial

y1(m):1+z (—A)(l—kg...(n—l_)\)in.

n!)?

n=1
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2.(a) P(z) = 0 only for x = 0. Furthermore, zp(z) = —2 — x and z%q(z) = 2 + 2.
It follows that
po = lim (-2 —2z) = -2
z—0
go = lim (2 + 2?) =2
z—0
and therefore x = 0 is a regular singular point.

(b) The indicial equation is given by 7(r — 1) — 2r +2 = 0, that is, 7> — 3r +2 =0,
with roots 71 =2 and r, = 1.

4. The coeflicients P(x), Q(z), and R(x) are analytic for all x € R. Hence there
are no singular points.

5.(a) P(x) =0 only for z = 0. Furthermore, xp(z) = 3sinz/x and 2%q(x) = —2.
It follows that

Po = limSSmx =3
z—0 xT

qo = lim —2= -2
z—0

and therefore x = 0 is a regular singular point.

(b) The indicial equation is given by 7(r — 1) + 3r — 2 = 0, that is, 7 +2r —2 =0,
with roots 7 = =14+ v3 and ro = —-1—+/3.

6.(a) P(x) =0 for x =0 and z = —2. We note that p(x) = 27 (z +2)71/2, and
q(z) = —(z +2)71/2. For the singularity at z = 0,
I 1 1
=lim — =~
Po= o +2) 4

2

lim ——
#50 2(z + 2)

qo =

and therefore x = 0 is a regular singular point.
For the singularity at x = —2,

. . 1
= Jim o+ 2p(e) = i, 7=
— 2
g = lim (z+2)%q(z) = lim —z+2) =0
T——2 r——2 2

and therefore £ = —2 is a regular singular point.
(b) For x = 0: the indicial equation is given by r(r — 1) +r/4 = 0, that is, r? —
3r/4 = 0, with roots 1 =3/4 and ro =0.

For = —2: the indicial equation is given by r(r — 1) —r/4 = 0, that is, 7% —
5r/4 =0, with roots r; =5/4 and 7, = 0.
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7.(a) P(z) = 0 only for z = 0. Furthermore, zp(x) = 1/2 + sinz/ 2z and z%q(x) =
1. It follows that

po = lim ap(z) =1
z—0
qo = lim z%¢(z) = 1
z—0
and therefore x = 0 is a regular singular point.
(b) The indicial equation is given by
rr—1)+r+1=0,
that is, 72 +1 = 0, with complex conjugate roots r = % 7.

8.(a) Note that P(xz) =0 only for x = —1. We find that p(z) =3(z —1)/(z + 1),
and g(z) = 3/(x + 1)2. It follows that

po= lim (z+1)p(z) = lim 3(z—1)=—6
q = a:l—i>rE1 (z+1)%q(z) = xl_i>r£113 =3
and therefore £ = —1 is a regular singular point.
(b) The indicial equation is given by
r(r—1)—6r+3=0,
that is, 72 — 7r +3 = 0, with roots 71 = (7 ++/37)/2 and ro = (7 —/37)/2.

10.(a) P(z) = 0 for = 2 and z = —2. We note that p(z) = 2z(x — 2)~?(x +2) 71,
and ¢(z) = 3(x — 2)7!(x + 2)~L. For the singularity at = = 2,

. . 2x
lim (2~ 2)p(z) = lim ——

)

which is undefined. Therefore x = 2 is an irregular singular point. For the singu-
larity at x = —2,

. . 2z 1
po = lim, (v +2)p(z) = lim, == =7
. . 3(x+2)
— 2 _ —
% = Jim, (z+2) (@) = lim, = —5==0

and therefore x = —2 is a regular singular point.

(b) The indicial equation is given by r(r — 1) —r/4 =0, that is, r> —5r/4 =0,
with roots 71 =5/4 and 7o = 0.
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11.(a) P(z) =0 for =2 and z = —2. We note that p(z) =2z/(4 — z?), and
q(x) = 3/(4 — 2?). For the singularity at = = 2,

. —2x
o =l o~ 2pte) = fiy 5 = -1
) 3(2—x)
— _ 9)2 - =
o = Jiy (e = 2al) =iy =y =0
and therefore x = 2 is a regular singular point.
For the singularity at * = -2,
. . 2z
po = xl—I)H—I2 (:E T 2)p(x) B xl—l>n—12 2 — x =1
) . 3(z+2)
_ 2 _ _
G = lim, (z+2)%g(x) = i, 2—z 0

and therefore x = —2 is a regular singular point.

(b) For z = 2: the indicial equation is given by r(r — 1) — r = 0, that is, 72 — 2r =
0, with roots r1 =2 and r9 =0.

For z = —2: the indicial equation is given by r(r — 1) — r = 0, that is, 72 — 2r =
0, with roots r1 =2 and r, =0.

12.(a) P(z) =0 for = 0 and & = —3. We note that p(z) = —22~(z + 3)~!, and
q(x) = —1/(x + 3)2. For the singularity at = = 0,

— lim o p(e) = lim — = >
. 2 . —z?
0= Jim 27q(@) = lim) 755 =0

and therefore x = 0 is a regular singular point.
For the singularity at x = —3,

. . -2 2
= fim o+ 9p(e) = lim, =5
T 2 BT . _
g = lim (z+3)%(z) = lim (-1)=-1
and therefore x = —3 is a regular singular point.

(b) For z = 0: the indicial equation is given by r(r — 1) — 2r/3 = 0, that is, r? —

5r/3 =0, with roots r1 =5/3 and ro =0.
For x = —3: the indicial equation is given by r(r — 1) +2r/3 — 1 = 0, that is,
r? —r/3—1=0, with roots r; = (1 ++/37)/6 and 72 = (1 —+/37)/6.

14.(a) Here zp(z) = 2x and 22?q(x) = 6ze® . Both of these functions are analytic
at x = 0, therefore x = 0 is a regular singular point. Note that pp = ¢y =0.

(b) The indicial equation is given by r(r — 1) = 0, that is, 72> —r = 0, with roots
ri=1and ro =0.
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(c) In order to find the solution corresponding to r1 =1, set y =z > ana™
Upon substitution into the ODE, we have

Z (n+2)(n+ agp " +2 Z (n+ Da,z"t +6¢° Z anz” Tt =0.
n=0 = n=20

After adjusting the indices in the first two series, and expanding the exponential
function,

Z (n+1)ay, z" +2Znan 12" + 6 agz + (6ag + 6a1 )z

n=1

+(6ag + 6a1 + 3ag)x> + (6as + 6ag 4+ 3a1 +ag)z* +... =0.
Equating the coefficients, we obtain the system of equations

2a1 + 2ap 4 6ag =0

6as + 4a1 + 6ag + 6a; =0

12a3 + 6as + 6as + 6a1 + 3ag =0
20a4 + 8as + 6ag + 6as + 3a1 +ag =0

Setting ag = 1, solution of the system results in a; = —4, as = 17/3, a5 = —47/12,

aqy = 191/120, .... Therefore one solution is
17 47
=x—4r’+ =23 — —2t+ ... .
y(z) =x —4a” + 3%~ 3% +

The exponents differ by an integer. So for a second solution, set
yo(x) =ay(x) Inz +1+cx+ex® + ... Fcpx™ + ... .

Substituting into the ODE, we obtain

alLly(x)]-Inx+ 2ay;(z) + 2ay(z) —a@ +L

1+i0nx"] =0

n=1

Since L[y1(z)] =0, it follows that

— v1(z)
1+ 3 ena™| = —2ay{(z) —2 :
—|—n:1c T ] ay () ay1(z)+a .

More specifically,

Z n(n+1)cpp1z™ + 2 Z ne,x™ +6 + (6 4 6¢1)x
=1

n=1

61 193
+(6cy + 6cy +3)2? + ... = —a + 10azx — gaxQ—i—ﬁa‘r?’—i—... .
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Equating the coefficients, we obtain the system of equations

6=—a
2¢co + 8c1 + 6 = 10a
61
6¢c3 + 10cy + 6¢1 + 3 = 73(1
193
12¢4 + 12¢3 4+ 62 + 3c1 + 1 = ﬁa
Solving these equations for the coefficients, a = —6. In order to solve the remaining
equations, set ¢; = 0. Then ¢y = —33, ¢3 = 449/6, ¢4 = —1595/24,. ... Therefore

a second solution is

44 1
ya(z) = —6y1(x) In = + 1_33$2+?9x3—%x4

15.(a) Note the p(z) = 6x/(z — 1) and ¢(z) = 3z~ 1(x — 1)~ . Furthermore, z p(x) =
622/(xz — 1) and 2%q(x) = 3z/(x — 1). It follows that

. 62
poii%x—lio
. 3x
qo_ilg%)x—l_o

and therefore x = 0 is a regular singular point.

(b) The indicial equation is given by r(r — 1) = 0, that is, 72> —r = 0, with roots
ri1=1and r, =0.

(c) In order to find the solution corresponding to 71 =1, set y=a Y ,a,z".

Upon substitution into the ODE, we have

oo (oo}

Y nn+Dana™t =Y a4 Daga™ +6 > (n+Dana™ > +3 ) apa™ =0.

n=1 n=1 n=0 n=0

After adjusting the indices, it follows that

Z nn—Dap_1 2" — Z nn+ a,z™ +6 Z (n—1ap—22™+3 Z Gp_12" =0.
n=2 n=1 n=2 n=1
That is,

—2a1 + 3ag + Z [—n(n +1Day + (n* —n+3)an_1 +6(n — 1)(1”,2] " = (.

n=2
Setting the coefficients equal to zero, we have a; = 3a¢/2, and for n > 2,

nn+1a, = (n? —n+3)a,_1 +6(n—1)a,_o.
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If we assign ap = 1, then we obtain a; =3/2, az =9/4, a3 =51/16, .... Hence
one solution is

3 9 51 111
yl(x):x+§x2+ix3+ﬁx4+mx5+... .

The exponents differ by an integer. So for a second solution, set
o) =ay(x) Inz +1+cx+ea’+ ... +cpx™+ ... .
Substituting into the ODE, we obtain

x
2ax y, (z) — 2ayq(z) + 6az y1(x) — ayi(z) + a% +L

n=1

1+ i cnx”] =0,

since L[y (z)] =0. It follows that

L (@)

oo
1+ Z cna:"] =2ay,(z) — 2az y{(z) + ay(x) — 6axryi(x) —a

n=1

Now

=34 (—2c2 + 3c1)x + (—6¢3 + Beg + 6¢y )2+
+ (—12¢4 4 9e3 + 12¢0) x> + (—20c5 + 15¢4 4 18¢3)® + ... .

1+ icnx"

n=1

L

Substituting for y;(x), the right hand side of the ODE is
a+ Zam + §ax2 + §a:zc?’ - @ax‘l — gaﬁ +
2 4 16 80 10 T

Equating the coefficients, we obtain the system of equations

3=a
7202 + 301 = ;a
3
—603 + 502 + 601 = Za
—12¢4 + 9c3 + 12¢5 = %a

We find that a = 3. In order to solve the second equation, set ¢; = 0. Solution
of the remaining equations results in co = —21/4, ¢3 = —19/4, ¢4, = —597/64, . . ..
Hence a second solution is

21 1
22 9 37@364Jr

y2(x) =3y1(x) Inz + |1 — 1 1 ol
16.(a) After multiplying both sides of the ODE by z, we find that x p(z) = 0 and
22q(x) = x. Both of these functions are analytic at x = 0, hence z = 0 is a regular
singular point.

(b) Furthermore, pg = go = 0. So the indicial equation is r(r — 1) = 0, with roots
ri1=1and ro =0.
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(c) In order to find the solution corresponding to 71 =1, set y=x > -,

Upon substitution into the ODE, we have

oo

oo
Z n(n+ 1a, 2" + Z apx™tt =
n=0

That is,

Z (n+1)ap +an—1] 2" =0.

Setting the coefficients equal to zero, we find that for n > 1,

o —OGp—1
Con(n+1)’
It follows that
o — —On-1 Q2 _ (=D"ag
" nn+1l) (n—Dn2n+1) 7 (m)2(n+1)°
Hence one solution is
1 1 1 1
()= — -2+ —a® — —at 4+ —a° ...

2 12 144 2880

The exponents differ by an integer. So for a second solution, set

ya(x) = ayr () Inz +1+cz+cx®+...+cpx™+....

Substituting into the ODE, we obtain

aLlyi(x)]-Inx+2ay,(z) —

n=1

Since L[y1(z)] =0, it follows that

xT

(oo}
1+ Z Cn x"] = —2ay(z) —|—ay1(x> .

n=1

Now

1—|—ch

n=1

+ (2¢9 + ¢1)x + (6c3 4 co)x? + (12¢4 + c3)2®

+(20c5 + c4)x + (30c6 + c5)a® 4. .. .
Substituting for y;(z), the right hand side of the ODE is

—a+ 3ax— Ea;v —|—L x3—iax +.
2 12 144 320

1+i0nm"1 =0

anpx”.
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Equating the coefficients, we obtain the system of equations

1=—-a
2c0 +c1 = ga
6c3 + cg = —%a
12¢4 + c3 = 114
Evidently, a = —1. In order to solve the second equation, set ¢; = 0. We then find
that ¢g = —3/4, c3 =7/36, ¢4 = —35/1728 . ... Therefore a second solution is
y2(z) = —y1(z) Inx + - 32 +l B g

4 36 1728

19.(a) After dividing by the leading coefficient, we find that

L L —(14+a+ Bz
= i) = Jiy TR
—afx

1 2 1 _
go = lim a%q(z) = lim ——"= =

Hence x = 0 is a regular singular point. The indicial equation is r(r — 1) +yr =0,
with roots 11 =1—+ and 2 =0.

(b) For z =1,
v+ (1 +a+p)x

po = lim (z — 1)p(x) = lim =l—-v+a+8.
z—1 z—1 X
-1
qo = liml(:rf 1)2g(x) = lim aflz=1) =0.
z—

r—1 x

Hence z = 1 is a regular singular point. The indicial equation is
P —(y—a—-pB)r=0,

with roots 11 =y —a— 0 and r, =0.

(c) Given that 71 — 75 is not a positive integer, we can set y =Y " a,z™. Sub-
stitution into the ODE results in
o0 (o)
r(1—x) Y n(n—Dana" 4+ [y - (1+a+ B Z nape" ™ —af Y apa" =
n=2 n=1 n=0

That is,

oo oo

Z nn+ Dap12"™ — Z n(n — Dayz™ + v Z (n+ Dapp12™

n=1 n=2 n=0
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n=1

—(1+a+6)2nanm"—aﬁ2anx"20
n=20

Combining the series, we obtain

var —aBag+[(2+27)a2 — (1 +a+ B+ap)ar]z+ Y Ayz™ =0,

n=2
in which

Ay = (4 1)+ s — o — 1)+ (1 +a+ B)n + Bl an.
Note that n(n —1) + (1 +a+ S)n+af = (n+ a)(n + B) . Setting the coefficients
equal to zero, we have ya; — affag =0, and
(n+a)(n+5)

T i ()

n

for n > 1. Hence one solution is
af ale+1)BB+1) 5 ala+D)(a+2)B(B+1)(B+2) ;
O R Y Y I TR Yy + 1) (v +2) - 3! S

Since the nearest other singularity is at = 1, the radius of convergence of y;(z)
will be at least p=1.

yi(z) =1+

d) Given that r; — 7o is not a positive integer, we can set y = x' =7 b,x".
1% ger, Yy n=20
Then substitution into the ODE results in

z(l—z Z n+1-— — Va7

+—10+a+p)x ZnJrlf anT fozﬂza "I = 0.

n=0
That is,
o0 (o)
> (1 =) =)ana” 7 = 37 (041 =7)(n = ana"
n=20 n=0
o) oo
7 3 (41 =)apa™ T = (I a+p) > (n+1—7)aa™H
n=20 n=0

o0
—af E Azt = 0.
n=0

After adjusting the indices,

D 1=y (n—7)aua" T =Y (n=y)(n—1-7)an 12"
n=0 n=1
+72(n+1—7)anw —(1+a+p) Zn Y)an_1z" W—aﬁZan,lx”_"’:O.

n=0 n=1 n=1
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Combining the series, we obtain

Z B,z"77" =0,
n=1
in which
By=nn+1-7b,—[(n=7)(n—v+a+8)+aflb,_1.

Note that (n —y)(n—y+a+8)+aB = (n+a—7v)(n+ B —7). Setting B, =0,
it follows that for n > 1,

(n+a—-7y)(n+pB-7)

bn = nn+1-—7) bn1.
Therefore a second solution is
1 - 1 -
yo(x) = 27 {1 + (1+a (27_)(7)_1'_'/6 7)37
(I+a—-72+a—7)1+8-72+8-7) »
+ (2_7)(3_7)2! T +]

(e) Under the transformation z = 1/£, the ODE becomes

da-Lfy, fhely L
55(1 E)d£2+ 26 5(1 ¢

That is,

)—¢&° v—(1+a+ﬁ)§]}§z—a y=0.

. d? d
@5—52)75%[252—752+<—1+a+m§]dig—a/ay:o.

Therefore £ = 0 is a singular point. Note that

2 1 -
o) = B g9 = 2
It follows that
po = i €p(€) = Jim (2_”)52(_1”‘““3> —1-a-5,
0 = lim €29(6) = lim = = ap.

Hence £ =0 (z = o) is a regular singular point. The indicial equation is
rr—1)+(1—-a—-B8)r+aB8=0,
or 2 — (a + B)r + af = 0. Evidently, the roots are r = a and r = j3.
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3. Here xp(z) =1 and 22q(x) = 22, which are both analytic everywhere. We set
y=a"(ap + a1z + ax® + ... + a,a™ + ...). Substitution into the ODE results in

o0 (o) o0
Z (r4+n)(r4+n—1Da, 2" + Z (r+mn)a, ™" +2 Z apz” TPl =0.

n=0 n=0 n=0

After adjusting the indices in the last series, we obtain

ag [r(r—1)+r]a” + Z [(r+n)(r+n—1)a,+ (@ +n)a, +2a,_1]2" " = 0.
n=1
Assuming ag # 0, the indicial equation is 72 = 0, with double root » = 0. Setting
the remaining coefficients equal to zero, we have for n > 1,
2
an(r) = BCETSH ap—1(r) .

It follows that

—1)n2n
an(r) = (=1

[(n+r)(n+r—1)...(14+7r)]

a0, M= 1.
Since r = 0, one solution is given by
oo
e =2 "
n=0 :

For a second linearly independent solution, we follow the discussion in Section 5.6.
First note that

al(r) 1 1 1
= -2 + + ...+
an(r) n+r n+r—1 1+
Setting r =0,
, B B (_1)n 2n
Therefore,

4. Here xp(z) =4 and z2¢(z) = 2 + x, which are both analytic everywhere. We
set y = 2" (ap + a1z + asx? + ... + a,a™ + ...). Substitution into the ODE results
in

o0 o0
Z (r4+n)(r+n—1Da, 2" +4 Z (r+mn)a, "™
n=0 n=0

00 0o
+ Z a/nx7-+n+1 + ) Z anmr_;,_n =0.
n=0 n=0
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After adjusting the indices in the second-to-last series, we obtain

ag [r(r—1)+4r + 2]z

+z r4+n)(r4+n—1Da, +4(r+n)a, +2an + an_1] 2" = 0.

n=1
Assuming ag # 0, the indicial equation is 72 4+ 3r +2 = 0, with roots r; = —1 and
ro = —2. Setting the remaining coeflicients equal to zero, we have for n > 1,
1
an(r) = — ap—1(r) .

(n+r+1)(n+r+2)
It follows that

an(’l") — (_l)n

(n+r+Dn+r)...24+7r)][(n+r+2)(n+7r)...(3+7)]

Since r; = —1, one solution is given by

_milz n—|—1 "

For a second linearly independent solution, we follow the discussion in Section 5.6.
Since 11 —ro = N =1, we find that

ap, n>1.

1
(r+2)(r+3)’
with ag = 1. Hence the leading coefficient in the solution is

a= lim (r+2)a(r)=-1.
r——2

ai(r) = —

Further,
(=n"
n+r+2) [(n+r+)n+r)...3+7)
Let A,(r) = (r +2)a,(r). It follows that
Ay 1 I S
An(r) n+r+2 n+r+1 n+r 7 347’

(r+2)an(r) =

Setting r = 1o = —2,

/
fl:é—;;:_i_Q[nil nig—'—"""l}:—Hn—Hn_l.
Hence
en(=2) = —(Hy + Hyo1) Ap(=2) = —(H, + Hn_l)&
nl(n —1)!
Therefore,
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6. Let y(x) =v(x)/v/x . Then y' =z Y20 —273/2¢/2 and y" =2~ /20"
x73/29’ +3275/2y/4. Substitution into the ODE results in

1
[3:3/211”—3:1/211’—&—3%71/211/4} + [m1/21}’ —xil/zv/2} + (2% — Z):lfl/Qv =0.

Simplifying, we find that
v +v=0,

with general solution v(z) = ¢ cos x + ¢o sin . Hence

y(z) = cix % cos .+ cox % sin z.

8. The absolute value of the ratio of consecutive terms is

oo #2222 (m 4 )im! |
Ao T2 |$|2m 22m+2(m + 2)!(m + 1)! 4m+2)(m+1) ’
Applying the ratio test,
T CEUNE Kl B iy =0
m=oo | Qg 2™ m—oo 4(m +2)(m + 1) ’

Hence the series for Ji(x) converges absolutely for all values of z. Furthermore,
since the series for Jy(z) also converges absolutely for all x, term-by-term differen-
tiation results in

, B o (71)m 2m—1 s m+1 2m+1 B
JO (.CE) - Z 22m—1 m; Z 2m+1 m + )l m!
m=1 m=

e ( ) 2m

x
T2 Z 22m(m 4+ 1)m!
Therefore, Jj(x) = —J1(x).

9.(a) Note that z p(z) = 1 and z?q(x) = 2% — v, which are both analytic at z = 0.
Thus = = 0 is a regular singular point. Furthermore, py = 1 and ¢o = —2. Hence
the indicial equation is 2 — v2 = 0, with roots 7 = v and ro = —v.

(b) Set y = a"(ap + a1 + asx® + ...+ a,x™ +...). Substitution into the ODE
results in

oo

Z (r+n)(r+mn—1a, 2" + Z (r+n)a, ™"

n=0 n=20

00 00
4 a xr+n+2 _ V2 a xr+n _
§ n § n
n=0 n=20

After adjusting the indices in the second-to-last series, we obtain

ag [7"(7"—1)+7'—1/2]xr+a1 [(T+1)T+(r+1)_y2]

+ Z [(T +n)(r+n—1a, + (r +n)a, — v2a, + an,ﬂ T — 0.

n=2
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Setting the coefficients equal to zero, we find that a; = 0, and
-1

an = (7"+n)2 _ 1/2 a‘n—27
for n>2. It follows that a3 =as =... =agm+1 = ... =0. Furthermore, with
r=v,
-1
p = ————— Qp_2 .
n(n + 2v) 2
So for m=1,2,...,
—1 =Hm
Qom = ———————— Qom—2 = ap -
? 2m(2m + 2v) a2 22nml(1+v)24+v)...(m—14+v)(m+v) 0

Hence one solution is

y(z) =z

— (_1m Ty2m
T+ Z m!(1+u)(2—|—y)...(m—1+y)(m—|—y)(§)2 ]

m=1

(c¢) Assuming that r; —ro = 2v is not an integer, simply setting r = —v in the
above results in a second linearly independent solution

= (=Hm T\ om
1+ o S C B Sy g T e 1O ]

m=1

4

ya(z) =2

(d) The absolute value of the ratio of consecutive terms in y;(z) is
a2y 2P 22m (1 +v) ... (m +v)
lz|”™ 2242 (m + D1 +v) ... (m+1+v)
LR

T Am+ )(mt1tv)

A2m+42 T
Aom x2m

Applying the ratio test,

2m+2 |x|2

= lim =
m—oo 4(m+1)(m+1+v)

A2m42 T

lim
m— 00

Aom x2m

Hence the series for y;(x) converges absolutely for all values of 2. The same can
be shown for y2(x). Note also, that if v is a positive integer, then the coefficients
in the series for yo(x) are undefined.

10.(a) It suffices to calculate L [Jo(z) In z]. Indeed,

[Jo(x) In z]" = Jj(x) In = + %x)
. () Jo(a)
Jo(x Jo(x
oa) In 0] = Jg(2) In 2+ 228020 _ ole)
Hence

L[Jo(x) In z] = 22J) (z) In 2 + 2z JJ(2) — Jo(x)
+aJy(z) Inx+ Jo(z) + 22 Jo(x) In z.
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Since x?Jy(x) + x JJ(z) + 2> Jo(z) = 0,
L[Jo(z) In 2] = 2z J;(z).

(b) Given that L [y2(z)] =0, after adjusting the indices in part (a), we have

bz + 22by 22 + Z (nzbn +by_9)z" = 2z Jo/(z) .

n=3
Using the series representation of Jj(z) in Problem 8,

2n

5 2 N~(2 no_ o~ (=D (2n)a

n=3 n=1
(c) Equating the coefficients on both sides of the equation, we find that
b1 :bgz...:b2m+1 =...=0.
Also, with n = 1, 22b, = 1/(11)?, that is, b, = 1/ [22(1!)?]. Furthermore, for m > 2,

2 _ L, (=1)"(2m)
(2m)“bom + bom—2 = _2W .
More explicitly,

1 1
“Eplty)

1 1 1

= (1+=-4=
224262( +2+3)

by =

be

It can be shown, in general, that

Hp,

o m—+1
b2m - (_1) * 22m(m!)2 :

11. Bessel’s equation of order one is
2y +xy' + (@ -1Dy=0.

Based on Problem 9, the roots of the indicial equation are ry =1 and ro = —1.
Sety = 2"(ag + a1 + asx? + ... Fa " + .. .). Substitution into the ODE results
in

Z (r+n)(r+n—1a,z" " + Z (r+n)a, 2"
n=0

n=0

oo o0
+ g a2 — g apz™ T =0.
n=20 n=0

After adjusting the indices in the second-to-last series, we obtain

ag[r(r—=1)+r—1a"+a [(r+1)r+(r+1)—1]
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+ Z [(r+n)(r+n—1ap,+ (r+n)a, —a, + an_2]z"™ =0.

n=2
Setting the coefficients equal to zero, we find that a; =0, and

-1 -1

an(r) = (r+n)2—1 an—2(r) = (n+r+1)n+r—-1) an=2(r);
for n > 2. It follows that ag = a5 = ... = agm41 = ... = 0. Solving the recurrence
relation,
agm (1) = (=" ag.
2m+r+1)C2Cm+r—-12...(r+3)32(r+1)

With r=7r; =1,

_ (=™
azm(1) = 22m(m + 1)I'm)! @o-

For a second linearly independent solution, we follow the discussion in Section 5.6.

Since 1 —ry = N = 2, we find that
1
as(r) = —————+,
2(r) (r+3)(r+1)
with ag = 1. Hence the leading coefficient in the solution is

1
a= lim (r+1)as(r)=—=.
r—-—1 2
Further,

(1™ |
@m4+r+1)[2m+r—1)...3+7)
Let A, (r) = (r+1)a,(r). It follows that

Al 1 1 1
2m(r):_ -9 4+
Ao (1) 2m +r+1 2m +1r —1 3+

(r4+1)agm(r) =

Setting r = ro = —1, we calculate
1
CQm(_]-) = _§(Hm + Hmfl)A2m(_]-)

(-~ 1 ("

1
= —= Hm Hm, = Hm Hm, .
g (Hon 1)2m [(2m—2)...2)° g (Hom 1)22’”*1?71!(771*1)!
Note that agm,+1(r) = 0 implies that As,,11(r) =0, so

Comi1(—1) = {dAngrl(r)} =0.

dr _
T=T2
Therefore,
1 = )™z
ya(z) = x E ()()27"] In x

T2 (m+1)!m! 2

m=0
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1
4=
X

Based on the definition of .J;

—

z),

1
ya(z) = =J1(z) In x + -

(_1>m(Hm + Hmfl) ('IL‘)27n‘|
m!(m —1)! 2 '

>

m

1

(-1)™(Hp + Hp—1)

)™ (
m!(m — 1)!

(

X

2

)Zm] .
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