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C H A P T E R

5

Series Solutions of Second Order

Linear Equations

5.1

1. Apply the ratio test:

lim
n→∞

∣∣(x− 3)n+1
∣∣

|(x− 3)n|
= lim

n→∞
|x− 3| = |x− 3| .

Hence the series converges absolutely for |x− 3| < 1 . The radius of convergence
is ρ = 1 . The series diverges for x = 2 and x = 4, since the n-th term does not
approach zero.

3. Applying the ratio test,

lim
n→∞

∣∣n!x2n+2
∣∣

|(n+ 1)!x2n|
= lim

n→∞

x2

n+ 1
= 0 .

The series converges absolutely for all values of x. Thus the radius of convergence
is ρ =∞ .

4. Apply the ratio test:

lim
n→∞

∣∣2n+1xn+1
∣∣

|2nxn|
= lim

n→∞
2 |x| = 2 |x| .

Hence the series converges absolutely for 2 |x| < 1, or |x| < 1/2 . The radius of
convergence is ρ = 1/2 . The series diverges for x = ±1/2 , since the n-th term
does not approach zero.
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6. Applying the ratio test,

lim
n→∞

∣∣n(x− x0)n+1
∣∣

|(n+ 1)(x− x0)n|
= lim

n→∞

n

n+ 1
|(x− x0)| = |(x− x0)| .

Hence the series converges absolutely for |(x− x0)| < 1 . The radius of convergence
is ρ = 1 . At x = x0 + 1 , we obtain the harmonic series, which is divergent. At the
other endpoint, x = x0 − 1 , we obtain

∞∑
n=1

(−1)n

n
,

which is conditionally convergent.

7. Apply the ratio test :

lim
n→∞

∣∣3n(n+ 1)2(x+ 2)n+1
∣∣

|3n+1n2(x+ 2)n|
= lim

n→∞

(n+ 1)2

3n2
|(x+ 2)| = 1

3
|(x+ 2)| .

Hence the series converges absolutely for 1
3 |x+ 2| < 1, or |x+ 2| < 3 . The radius

of convergence is ρ = 3 . At x = −5 and x = +1 , the series diverges, since the n-th
term does not approach zero.

8. Applying the ratio test,

lim
n→∞

∣∣nn(n+ 1)!xn+1
∣∣

|(n+ 1)n+1n!xn|
= lim

n→∞

nn

(n+ 1)n
|x| = 1

e
|x| ,

since

lim
n→∞

nn

(n+ 1)n
= lim

n→∞
(1 +

1

n
)−n = e−1.

Hence the series converges absolutely for |x| < e. The radius of convergence is
ρ = e . At x = ± e, the series diverges, since the n-th term does not approach zero.
This follows from the fact that

lim
n→∞

n! en

nn
√

2πn
= 1 .

10. We have f(x) = ex, with f (n)(x) = ex, for n = 1, 2, . . . . Therefore f (n)(0) = 1.
Hence the Taylor expansion about x0 = 0 is

ex =

∞∑
n= 0

xn

n!
.

Applying the ratio test,

lim
n→∞

∣∣n!xn+1
∣∣

|(n+ 1)!xn|
= lim

n→∞

1

n+ 1
|x| = 0.

The radius of convergence is ρ =∞ .
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11. We have f(x) = x , with f ′(x) = 1 and f (n)(x) = 0 , for n = 2, . . . . Clearly,
f(1) = 1 and f ′(1) = 1 , with all other derivatives equal to zero. Hence the Taylor
expansion about x0 = 1 is

x = 1 + (x− 1).

Since the series has only a finite number of terms, it converges absolutely for all x .

14. We have f(x) = 1/(1 + x), f ′(x) = −1/(1 + x)2, f ′′(x) = 2/(1 + x)3, . . . with
f (n)(x) = (−1)nn!/(1 + x)n+1, for n ≥ 1 . It follows that f (n)(0) = (−1)nn! for
n ≥ 0 . Hence the Taylor expansion about x0 = 0 is

1

1 + x
=
∞∑
n= 0

(−1)nxn.

Applying the ratio test,

lim
n→∞

∣∣xn+1
∣∣

|xn|
= lim

n→∞
|x| = |x| .

The series converges absolutely for |x| < 1 , but diverges at x = ± 1 .

15. We have f(x) = 1/(1− x), f ′(x) = 1/(1− x)2, f ′′(x) = 2/(1− x)3, . . . with
f (n)(x) = n!/(1− x)n+1, for n ≥ 1 . It follows that f (n)(0) = n!, for n ≥ 0 . Hence
the Taylor expansion about x0 = 0 is

1

1− x
=

∞∑
n= 0

xn.

Applying the ratio test,

lim
n→∞

∣∣xn+1
∣∣

|xn|
= lim

n→∞
|x| = |x| .

The series converges absolutely for |x| < 1 , but diverges at x = ± 1 .

16. We have f(x) = 1/(1− x), f ′(x) = 1/(1− x)2, f ′′(x) = 2/(1− x)3, . . . with
f (n)(x) = n!/(1− x)n+1, for n ≥ 1 . It follows that f (n)(2) = (−1)n+1n! for n ≥ 0 .
Hence the Taylor expansion about x0 = 2 is

1

1− x
= −

∞∑
n= 0

(−1)n(x− 2)n.

Applying the ratio test,

lim
n→∞

∣∣(x− 2)n+1
∣∣

| (x− 2)n|
= lim

n→∞
|x− 2| = |x− 2| .

The series converges absolutely for |x− 2| < 1 , but diverges at x = 1 and x = 3 .

17. Applying the ratio test,

lim
n→∞

∣∣(n+ 1)xn+1
∣∣

|nxn|
= lim

n→∞

n+ 1

n
|x| = |x| .



130 Chapter 5. Series Solutions of Second Order Linear Equations

The series converges absolutely for |x| < 1 . Term-by-term differentiation results in

y ′ =

∞∑
n= 1

n2xn−1 = 1 + 4x+ 9x2 + 16x3 + . . .

y ′′ =

∞∑
n= 2

n2(n− 1)xn−2 = 4 + 18x+ 48x2 + 100x3 + . . .

Shifting the indices, we can also write

y ′ =

∞∑
n= 0

(n+ 1)2xn and y ′′ =

∞∑
n= 0

(n+ 2)2(n+ 1)xn.

20. Shifting the index in the second series, that is, setting n = k + 1 ,

∞∑
k= 0

akx
k+1 =

∞∑
n= 1

an−1x
n .

Hence
∞∑
k= 0

ak+1x
k +

∞∑
k= 0

akx
k+1 =

∞∑
k= 0

ak+1x
k +

∞∑
k= 1

ak−1x
k

= a1 +

∞∑
k= 1

(ak+1 + ak−1)xk+1.

21. Shifting the index by 2 , that is, setting m = n− 2 ,

∞∑
n= 2

n(n− 1)anx
n−2 =

∞∑
m= 0

(m+ 2)(m+ 1)am+2 x
m

=

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n .

22. Shift the index down by 2 , that is, set m = n+ 2 . It follows that

∞∑
n= 0

anx
n+2 =

∞∑
m= 2

am−2 x
m =

∞∑
n= 2

an−2 x
n .

24. Clearly,

(1− x2)

∞∑
n= 2

n(n− 1)anx
n−2 =

∞∑
n= 2

n(n− 1)anx
n−2 −

∞∑
n= 2

n(n− 1)anx
n.

Shifting the index in the first series, that is, setting k = n− 2 ,

∞∑
n= 2

n(n− 1)anx
n−2 =

∞∑
k= 0

(k + 2)(k + 1)ak+2 x
k

=

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n.
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Hence

(1− x2)

∞∑
n= 2

n(n− 1)anx
n−2 =

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n −

∞∑
n= 2

n(n− 1)an x
n.

Note that when n = 0 and n = 1 , the coefficients in the second series are zero. So

(1− x2)

∞∑
n= 2

n(n− 1)anx
n−2 =

∞∑
n= 0

[(n+ 2)(n+ 1)an+2 − n(n− 1)an]xn.

26. Clearly,

∞∑
n= 1

nan x
n−1 + x

∞∑
n= 0

an x
n =

∞∑
n= 1

nan x
n−1 +

∞∑
n= 0

an x
n+1.

Shifting the index in the first series, that is, setting k = n− 1 ,

∞∑
n= 1

nan x
n−1 =

∞∑
k= 0

(k + 1)ak+1x
k.

Shifting the index in the second series, that is, setting k = n+ 1 ,

∞∑
n= 0

an x
n+1 =

∞∑
k= 1

ak−1x
k.

Combining the series, and starting the summation at n = 1 ,

∞∑
n= 1

nan x
n−1 + x

∞∑
n= 0

an x
n = a1 +

∞∑
n= 1

[(n+ 1)an+1 + an−1]xn.

27. We note that

x

∞∑
n= 2

n(n− 1)an x
n−2 +

∞∑
n= 0

an x
n =

∞∑
n= 2

n(n− 1)an x
n−1 +

∞∑
n= 0

an x
n.

Shifting the index in the first series, that is, setting k = n− 1 ,

∞∑
n= 2

n(n− 1)an x
n−1 =

∞∑
k= 1

k(k + 1)ak+1x
k =

∞∑
k= 0

k(k + 1)ak+1x
k,

since the coefficient of the term associated with k = 0 is zero. Combining the series,

x

∞∑
n= 2

n(n− 1)an x
n−2 +

∞∑
n= 0

an x
n =

∞∑
n= 0

[n(n+ 1)an+1 + an]xn.
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5.2

1.(a,b,d) Let y = a0 + a1x+ a2x
2 + . . .+ anx

n + . . . . Then

y ′′ =

∞∑
n= 2

n(n− 1)anx
n−2 =

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n.

Substitution into the ODE results in

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n −

∞∑
n= 0

anx
n = 0

or
∞∑
n= 0

[(n+ 2)(n+ 1)an+2 − an]xn = 0 .

Equating all the coefficients to zero,

(n+ 2)(n+ 1)an+2 − an = 0 , n = 0, 1, 2, . . . .

We obtain the recurrence relation

an+2 =
an

(n+ 1)(n+ 2)
, n = 0, 1, 2, . . . .

The subscripts differ by two, so for k = 1, 2, . . .

a2k =
a2k−2

(2k − 1)2k
=

a2k−4

(2k − 3)(2k − 2)(2k − 1)2k
= . . . =

a0

(2k)!

and

a2k+1 =
a2k−1

2k(2k + 1)
=

a2k−3

(2k − 2)(2k − 1)2k(2k + 1)
= . . . =

a1

(2k + 1)!
.

Hence

y = a0

∞∑
k= 0

x2k

(2k)!
+ a1

∞∑
k= 0

x2k+1

(2k + 1)!
.

The linearly independent solutions are

y1 = 1 +
x2

2!
+
x4

4!
+
x6

6!
+ . . . = cosh x

y2 = x+
x3

3!
+
x5

5!
+
x7

7!
+ . . . = sinh x .

(c) The Wronskian at 0 is 1.

4.(a,b,d) Let y = a0 + a1x+ a2x
2 + . . .+ anx

n + . . . . Then

y ′′ =

∞∑
n= 2

n(n− 1)anx
n−2 =

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n.
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Substitution into the ODE results in
∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n + k2x2

∞∑
n= 0

anx
n = 0 .

Rewriting the second summation,

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n +

∞∑
n= 2

k2an−2 x
n = 0 ,

that is,

2a2 + 3 · 2 a3x+

∞∑
n= 2

[
(n+ 2)(n+ 1)an+2 + k2an−2

]
xn = 0 .

Setting the coefficients equal to zero, we have a2 = 0 , a3 = 0 , and

(n+ 2)(n+ 1)an+2 + k2an−2 = 0 , for n = 2, 3, 4, . . . .

The recurrence relation can be written as

an+2 = − k2an−2

(n+ 2)(n+ 1)
, n = 2, 3, 4, . . . .

The indices differ by four, so a4 , a8 , a12 , . . . are defined by

a4 = −k
2a0

4 · 3
, a8 = −k

2a4

8 · 7
, a12 = − k2a8

12 · 11
, . . . .

Similarly, a5 , a9 , a13 , . . . are defined by

a5 = −k
2a1

5 · 4
, a9 = −k

2a5

9 · 8
, a13 = − k2a9

13 · 12
, . . . .

The remaining coefficients are zero. Therefore the general solution is

y = a0

[
1− k2

4 · 3
x4 +

k4

8 · 7 · 4 · 3
x8 − k6

12 · 11 · 8 · 7 · 4 · 3
x12 + . . .

]
+

+ a1

[
x− k2

5 · 4
x5 +

k4

9 · 8 · 5 · 4
x9 − k6

13 · 12 · 9 · 8 · 4 · 4
x13 + . . .

]
.

Note that for the even coefficients,

a4m = − k2a4m−4

(4m− 1)4m
, m = 1, 2, 3, . . .

and for the odd coefficients,

a4m+1 = − k2a4m−3

4m(4m+ 1)
, m = 1, 2, 3, . . . .

Hence the linearly independent solutions are

y1(x) = 1 +

∞∑
m= 0

(−1)m+1(k2x4)m+1

3 · 4 · 7 · 8 . . . (4m+ 3)(4m+ 4)

y2(x) = x

[
1 +

∞∑
m= 0

(−1)m+1(k2x4)m+1

4 · 5 · 8 · 9 . . . (4m+ 4)(4m+ 5)

]
.
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(c) The Wronskian at 0 is 1.

6.(a,b) Let y = a0 + a1x+ a2x
2 + . . .+ anx

n + . . . . Then

y ′ =

∞∑
n= 1

nanx
n−1 =

∞∑
n= 0

(n+ 1)an+1x
n

and

y ′′ =

∞∑
n= 2

n(n− 1)anx
n−2 =

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n.

Substitution into the ODE results in

(2 + x2)

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n − x

∞∑
n= 0

(n+ 1)an+1x
n + 4

∞∑
n= 0

anx
n = 0 .

Before proceeding, write

x2
∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n =

∞∑
n= 2

n(n− 1)anx
n

and

x

∞∑
n= 0

(n+ 1)an+1x
n =

∞∑
n= 1

nanx
n.

It follows that
4a0 + 4a2 + (3a1 + 12a3)x+

+

∞∑
n= 2

[2(n+ 2)(n+ 1)an+2 + n(n− 1)an − nan + 4an]xn = 0 .

Equating the coefficients to zero, we find that a2 = −a0 , a3 = −a1/4 , and

an+2 = − n2 − 2n+ 4

2(n+ 2)(n+ 1)
an , n = 0, 1, 2, . . . .

The indices differ by two, so for k = 0, 1, 2, . . .

a2k+2 = − (2k)2 − 4k + 4

2(2k + 2)(2k + 1)
a2k

and

a2k+3 = − (2k + 1)2 − 4k + 2

2(2k + 3)(2k + 2)
a2k+1.

Hence the linearly independent solutions are

y1(x) = 1− x2 +
x4

6
− x6

30
+ . . .

y2(x) = x− x3

4
+

7x5

160
− 19x7

1920
+ . . . .

(c) The Wronskian at 0 is 1.
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7.(a,b,d) Let y = a0 + a1x+ a2x
2 + . . .+ anx

n + . . . . Then

y ′ =

∞∑
n= 1

nanx
n−1 =

∞∑
n= 0

(n+ 1)an+1x
n

and

y ′′ =

∞∑
n= 2

n(n− 1)anx
n−2 =

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n.

Substitution into the ODE results in
∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n + x

∞∑
n= 0

(n+ 1)an+1x
n + 2

∞∑
n= 0

anx
n = 0 .

First write

x

∞∑
n= 0

(n+ 1)an+1x
n =

∞∑
n= 1

nanx
n.

We then obtain

2a2 + 2a0 +

∞∑
n= 1

[(n+ 2)(n+ 1)an+2 + nan + 2an]xn = 0 .

It follows that a2 = −a0 and an+2 = −an/(n+ 1) , n = 0, 1, 2, . . . . Note that the
indices differ by two, so for k = 1, 2, . . .

a2k = − a2k−2

2k − 1
=

a2k−4

(2k − 3)(2k − 1)
= . . . =

(−1)ka0

1 · 3 · 5 . . . (2k − 1)

and

a2k+1 = −a2k−1

2k
=

a2k−3

(2k − 2)2k
= . . . =

(−1)ka1

2 · 4 · 6 . . . (2k)
.

Hence the linearly independent solutions are

y1(x) = 1− x2

1
+

x4

1 · 3
− x6

1 · 3 · 5
+ . . . = 1 +

∞∑
n= 1

(−1)nx2n

1 · 3 · 5 . . . (2n− 1)

y2(x) = x− x3

2
+

x5

2 · 4
− x7

2 · 4 · 6
+ . . . = x+

∞∑
n= 1

(−1)nx2n+1

2 · 4 · 6 . . . (2n)
.

(c) The Wronskian at 0 is 1.

9.(a,b,d) Let y = a0 + a1x+ a2x
2 + . . .+ anx

n + . . . . Then

y ′ =

∞∑
n= 1

nanx
n−1 =

∞∑
n= 0

(n+ 1)an+1x
n

and

y ′′ =

∞∑
n= 2

n(n− 1)anx
n−2 =

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n.
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Substitution into the ODE results in

(1 + x2)

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n − 4x

∞∑
n= 0

(n+ 1)an+1x
n + 6

∞∑
n= 0

anx
n = 0 .

Before proceeding, write

x2
∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n =

∞∑
n= 2

n(n− 1)anx
n

and

x

∞∑
n= 0

(n+ 1)an+1x
n =

∞∑
n= 1

nanx
n.

It follows that

6a0 + 2a2 + (2a1 + 6a3)x+

+

∞∑
n= 2

[(n+ 2)(n+ 1)an+2 + n(n− 1)an − 4nan + 6an]xn = 0 .

Setting the coefficients equal to zero, we obtain a2 = −3a0, a3 = −a1/3 , and

an+2 = − (n− 2)(n− 3)

(n+ 1)(n+ 2)
an , n = 0, 1, 2, . . . .

Observe that for n = 2 and n = 3 , we obtain a4 = a5 = 0 . Since the indices dif-
fer by two, we also have an = 0 for n ≥ 4 . Therefore the general solution is a
polynomial

y = a0 + a1x− 3a0x
2 − a1x

3/3 .

Hence the linearly independent solutions are

y1(x) = 1− 3x2 and y2(x) = x− x3/3 .

(c) The Wronskian is (x2 + 1)2. At x = 0 it is 1.

10.(a,b,d) Let y = a0 + a1x+ a2x
2 + . . .+ anx

n + . . . . Then

y ′′ =

∞∑
n= 2

n(n− 1)anx
n−2 =

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n.

Substitution into the ODE results in

(4− x2)

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n + 2

∞∑
n= 0

anx
n = 0 .

First write

x2
∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n =

∞∑
n= 2

n(n− 1)anx
n.

It follows that

2a0 + 8a2 + (2a1 + 24a3)x+
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+

∞∑
n= 2

[4(n+ 2)(n+ 1)an+2 − n(n− 1)an + 2an]xn = 0 .

We obtain a2 = −a0/4 , a3 = −a1/12 and

4(n+ 2)an+2 = (n− 2)an , n = 0, 1, 2, . . . .

Note that for n = 2 , a4 = 0 . Since the indices differ by two, we also have a2k = 0
for k = 2, 3, . . . . On the other hand, for k = 1, 2, . . . ,

a2k+1 =
(2k − 3)a2k−1

4(2k + 1)
=

(2k − 5)(2k − 3)a2k−3

42(2k − 1)(2k + 1)
= . . . =

−a1

4k(2k − 1)(2k + 1)
.

Therefore the general solution is

y = a0 + a1x− a0
x2

4
− a1

∞∑
n= 1

x2n+1

4n(2n− 1)(2n+ 1)
.

Hence the linearly independent solutions are y1(x) = 1− x2/4 and

y2(x) = x− x3

12
− x5

240
− x7

2240
− . . . = x−

∞∑
n= 1

x2n+1

4n(2n− 1)(2n+ 1)
.

(c) The Wronskian at 0 is 1.

11.(a,b,d) Let y = a0 + a1x+ a2x
2 + . . .+ anx

n + . . . . Then

y ′ =

∞∑
n= 1

nanx
n−1 =

∞∑
n= 0

(n+ 1)an+1x
n

and

y ′′ =

∞∑
n= 2

n(n− 1)anx
n−2 =

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n.

Substitution into the ODE results in

(3− x2)

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n − 3x

∞∑
n= 0

(n+ 1)an+1x
n −

∞∑
n= 0

anx
n = 0 .

Before proceeding, write

x2
∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n =

∞∑
n= 2

n(n− 1)anx
n

and

x

∞∑
n= 0

(n+ 1)an+1x
n =

∞∑
n= 1

nanx
n.

It follows that

6a2 − a0 + (−4a1 + 18a3)x+

+

∞∑
n= 2

[3(n+ 2)(n+ 1)an+2 − n(n− 1)an − 3nan − an]xn = 0.
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We obtain a2 = a0/6 , 2a3 = a1/9 , and

3(n+ 2)an+2 = (n+ 1)an , n = 0, 1, 2, . . . .

The indices differ by two, so for k = 1, 2, . . .

a2k =
(2k − 1)a2k−2

3(2k)
=

(2k − 3)(2k − 1)a2k−4

32(2k − 2)(2k)
= . . . =

3 · 5 . . . (2k − 1) a0

3k · 2 · 4 . . . (2k)

and

a2k+1 =
(2k)a2k−1

3(2k + 1)
=

(2k − 2)(2k)a2k−3

32(2k − 1)(2k + 1)
= . . . =

2 · 4 · 6 . . . (2k) a1

3k · 3 · 5 . . . (2k + 1)
.

Hence the linearly independent solutions are

y1(x) = 1 +
x2

6
+
x4

24
+

5x6

432
+ . . . = 1 +

∞∑
n= 1

3 · 5 . . . (2n− 1)x2n

3n · 2 · 4 . . . (2n)

y2(x) = x+
2x3

9
+

8x5

135
+

16x7

945
+ . . . = x+

∞∑
n= 1

2 · 4 · 6 . . . (2n)x2n+1

3n · 3 · 5 . . . (2n+ 1)
.

(c) The Wronskian at 0 is 1.

12.(a,b,d) Let y = a0 + a1x+ a2x
2 + . . .+ anx

n + . . . . Then

y ′ =

∞∑
n= 1

nanx
n−1 =

∞∑
n= 0

(n+ 1)an+1x
n

and

y ′′ =

∞∑
n= 2

n(n− 1)anx
n−2 =

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n.

Substitution into the ODE results in

(1− x)

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n + x

∞∑
n= 0

(n+ 1)an+1x
n −

∞∑
n= 0

anx
n = 0 .

Before proceeding, write

x

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n =

∞∑
n= 1

(n+ 1)nan+1x
n

and

x

∞∑
n= 0

(n+ 1)an+1x
n =

∞∑
n= 1

nanx
n.

It follows that

2a2 − a0 +

∞∑
n= 1

[(n+ 2)(n+ 1)an+2 − (n+ 1)nan+1 + nan − an]xn = 0.

We obtain a2 = a0/2 and

(n+ 2)(n+ 1)an+2 − (n+ 1)nan+1 + (n− 1)an = 0
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for n = 0, 1, 2, . . . . Writing out the individual equations,

3 · 2 a3 − 2 · 1 a2 = 0

4 · 3 a4 − 3 · 2 a3 + a2 = 0

5 · 4 a5 − 4 · 3 a4 + 2 a3 = 0

6 · 5 a6 − 5 · 4 a5 + 3 a4 = 0

...

The coefficients are calculated successively as a3 = a0/(2 · 3), a4 = a3/2− a2/12 =
a0/24, a5 = 3a4/5− a3/10 = a0/120, . . .. We can now see that for n ≥ 2 , an is
proportional to a0. In fact, for n ≥ 2 , an = a0/(n!) . Therefore the general solution
is

y = a0 + a1x+
a0x

2

2!
+
a0x

3

3!
+
a0x

4

4!
+ . . . .

Hence the linearly independent solutions are y2(x) = x and

y1(x) = 1 +

∞∑
n= 2

xn

n!
= ex − x.

(c) The Wronskian is ex(1− x). At x = 0 it is 1.

13.(a,b,d) Let y = a0 + a1x+ a2x
2 + . . .+ anx

n + . . . . Then

y ′ =

∞∑
n= 1

nanx
n−1 =

∞∑
n= 0

(n+ 1)an+1x
n

and

y ′′ =

∞∑
n= 2

n(n− 1)anx
n−2 =

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n.

Substitution into the ODE results in

2

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n + x

∞∑
n= 0

(n+ 1)an+1x
n + 3

∞∑
n= 0

anx
n = 0 .

First write

x

∞∑
n= 0

(n+ 1)an+1x
n =

∞∑
n= 1

nanx
n.

We then obtain

4a2 + 3a0 +

∞∑
n= 1

[2(n+ 2)(n+ 1)an+2 + nan + 3an]xn = 0 .

It follows that a2 = −3a0/4 and

2(n+ 2)(n+ 1)an+2 + (n+ 3)an = 0
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for n = 0, 1, 2, . . . . The indices differ by two, so for k = 1, 2, . . .

a2k = − (2k + 1)a2k−2

2(2k − 1)(2k)
=

(2k − 1)(2k + 1)a2k−4

22(2k − 3)(2k − 2)(2k − 1)(2k)
= . . .

=
(−1)k3 · 5 . . . (2k + 1)

2k (2k)!
a0 .

and

a2k+1 = − (2k + 2)a2k−1

2(2k)(2k + 1)
=

(2k)(2k + 2)a2k−3

22(2k − 2)(2k − 1)(2k)(2k + 1)
= . . .

=
(−1)k 4 · 6 . . . (2k)(2k + 2)

2k (2k + 1)!
a1 .

Hence the linearly independent solutions are

y1(x) = 1− 3

4
x2 +

5

32
x4 − 7

384
x6 + . . . =

∞∑
n= 0

(−1)n3 · 5 . . . (2n+ 1)

2n (2n)!
x2n

y2(x) = x− 1

3
x3 +

1

20
x5 − 1

210
x7 + . . . = x+

∞∑
n= 1

(−1)n4 · 6 . . . (2n+ 2)

2n (2n+ 1)!
x2n+1.

(c) The Wronskian at 0 is 1.

15.(a) From Problem 2, we have

y1(x) =

∞∑
n= 0

x2n

2n n!
and y2(x) =

∞∑
n= 0

2n n!x2n+1

(2n+ 1)!
.

Since a0 = y(0) and a1 = y ′(0) , we have y(x) = 2 y1(x) + y2(x) . That is,

y(x) = 2 + x+ x2 +
1

3
x3 +

1

4
x4 +

1

15
x5 +

1

24
x6 + . . . .

The four- and five-term polynomial approximations are

p4 = 2 + x+ x2 + x3/3, and p5 = 2 + x+ x2 + x3/3 + x4/4 .

(b)
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(c) The four-term approximation p4 appears to be reasonably accurate (within 10%)
on the interval |x| < 0.7 .

17.(a) From Problem 7, the linearly independent solutions are

y1(x) = 1 +

∞∑
n= 1

(−1)nx2n

1 · 3 · 5 . . . (2n− 1)
and y2(x) = x+

∞∑
n= 1

(−1)nx2n+1

2 · 4 · 6 . . . (2n)
.

Since a0 = y(0) and a1 = y ′(0) , we have y(x) = 4 y1(x)− y2(x) . That is,

y(x) = 4− x− 4x2 +
1

2
x3 +

4

3
x4 − 1

8
x5 − 4

15
x6 + . . . .

The four- and five-term polynomial approximations are

p4 = 4− x− 4x2 +
1

2
x3, and p5 = 4− x− 4x2 +

1

2
x3 +

4

3
x4.

(b)

(c) The four-term approximation p4 appears to be reasonably accurate (within 10%)
on the interval |x| < 0.5 .

18.(a) From Problem 12, we have

y1(x) = 1 +

∞∑
n= 2

xn

n!
and y2(x) = x .

Since a0 = y(0) and a1 = y ′(0) , we have y(x) = −3 y1(x) + 2 y2(x) . That is,

y(x) = −3 + 2x− 3

2
x2 − 1

2
x3 − 1

8
x4 − 1

40
x5 − 1

240
x6 + . . . .

The four- and five-term polynomial approximations are

p4 = −3 + 2x− 3

2
x2 − 1

2
x3, and p5 = −3 + 2x− 3

2
x2 − 1

2
x3 − 1

8
x4 .
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(b)

(c) The four-term approximation p4 appears to be reasonably accurate (within 10%)
on the interval |x| < 0.9 .

20. Two linearly independent solutions of Airy’s equation (about x0 = 0) are

y1(x) = 1 +

∞∑
n= 1

x3n

2 · 3 . . . (3n− 1)(3n)

y2(x) = x+

∞∑
n= 1

x3n+1

3 · 4 . . . (3n)(3n+ 1)
.

Applying the ratio test to the terms of y1(x) ,

lim
n→∞

∣∣2 · 3 . . . (3n− 1)(3n)x3n+3
∣∣

|2 · 3 . . . (3n+ 2)(3n+ 3)x3n|
= lim
n→∞

1

(3n+ 1)(3n+ 2)(3n+ 3)
|x|3 = 0 .

Similarly, applying the ratio test to the terms of y2(x) ,

lim
n→∞

∣∣3 · 4 . . . (3n)(3n+ 1)x3n+4
∣∣

|3 · 4 . . . (3n+ 3)(3n+ 4)x3n+1|
= lim
n→∞

1

(3n+ 2)(3n+ 3)(3n+ 4)
|x|3 = 0 .

Hence both series converge absolutely for all x .

21. Let y = a0 + a1x+ a2x
2 + . . .+ anx

n + . . . . Then

y ′ =

∞∑
n= 1

nanx
n−1 =

∞∑
n= 0

(n+ 1)an+1x
n

and

y ′′ =

∞∑
n= 2

n(n− 1)anx
n−2 =

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n.

Substitution into the ODE results in

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n − 2x

∞∑
n= 0

(n+ 1)an+1x
n + λ

∞∑
n= 0

anx
n = 0 .



5.2 143

First write

x

∞∑
n= 0

(n+ 1)an+1x
n =

∞∑
n= 1

nanx
n.

We then obtain

2a2 + λ a0 +

∞∑
n= 1

[(n+ 2)(n+ 1)an+2 − 2nan + λ an]xn = 0 .

Setting the coefficients equal to zero, it follows that

an+2 =
(2n− λ)

(n+ 1)(n+ 2)
an

for n = 0, 1, 2, . . . . Note that the indices differ by two, so for k = 1, 2, . . .

a2k =
(4k − 4− λ)a2k−2

(2k − 1)2k
=

(4k − 8− λ)(4k − 4− λ)a2k−4

(2k − 3)(2k − 2)(2k − 1)2k

= (−1)k
λ . . . (λ− 4k + 8)(λ− 4k + 4)

(2k)!
a0 .

and

a2k+1 =
(4k − 2− λ)a2k−1

2k(2k + 1)
=

(4k − 6− λ)(4k − 2− λ)a2k−3

(2k − 2)(2k − 1)2k(2k + 1)

= (−1)k
(λ− 2) . . . (λ− 4k + 6)(λ− 4k + 2)

(2k + 1)!
a1.

Hence the linearly independent solutions of the Hermite equation (about x0 = 0)
are

y1(x) = 1− λ

2!
x2 +

λ(λ− 4)

4!
x4 − λ(λ− 4)(λ− 8)

6 !
x6 + . . .

y2(x) = x− λ− 2

3 !
x3 +

(λ− 2)(λ− 6)

5 !
x5 − (λ− 2)(λ− 6)(λ− 10)

7 !
x7 + . . . .

(b) Based on the recurrence relation

an+2 =
(2n− λ)

(n+ 1)(n+ 2)
an ,

the series solution will terminate as long as λ is a nonnegative even integer. If
λ = 2m, then one or the other of the solutions in part (b) will contain at most
m/2 + 1 terms. In particular, we obtain the polynomial solutions corresponding to
λ = 0, 2, 4, 6, 8, 10 :

λ = 0 y1(x) = 1

λ = 2 y2(x) = x
λ = 4 y1(x) = 1− 2x2

λ = 6 y2(x) = x− 2x3/3

λ = 8 y1(x) = 1− 4x2 + 4x4/3

λ = 10 y2(x) = x− 4x3/3 + 4x5/15
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(c) Observe that if λ = 2n , and a0 = a1 = 1 , then

a2k = (−1)k
2n . . . (2n− 4k + 8)(2n− 4k + 4)

(2k)!

and

a2k+1 = (−1)k
(2n− 2) . . . (2n− 4k + 6)(2n− 4k + 2)

(2k + 1)!
.

for k = 1, 2, . . . [n/2]. It follows that the coefficient of xn, in y1 and y2 , is

an =

{
(−1)k 4k k!

(2k)! for n = 2k

(−1)k 4k k!
(2k+1)! for n = 2k + 1

Then by definition,

Hn(x) =

{
(−1)k 2n (2k)!

4k k!
y1(x) = (−1)k (2k)!

k! y1(x) for n = 2k

(−1)k 2n (2k+1)!
4k k!

y2(x) = (−1)k 2 (2k+1)!
k! y2(x) for n = 2k + 1

Therefore the first six Hermite polynomials are

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x8 − 12x

H4(x) = 16x4 − 48x2 + 12

H5(x) = 32x5 − 160x3 + 120x

24. The series solution is given by

y(x) = 1− x2 +
x4

6
− x6

30
+

x8

120
+ . . . .

25. The series solution is given by

y(x) = x− x3

2
+

x5

2 · 4
− x7

2 · 4 · 6
+

x9

2 · 4 · 6 · 8
− . . . .
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27. The series solution is given by

y(x) = 1− x4

12
+

x8

672
− x12

88704
+ . . . .

28. Let y = a0 + a1x+ a2x
2 + . . .+ anx

n + . . . . Then

y ′ =

∞∑
n= 1

nanx
n−1 =

∞∑
n= 0

(n+ 1)an+1x
n

and

y ′′ =

∞∑
n= 2

n(n− 1)anx
n−2 =

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n.

Substitution into the ODE results in

(1− x)

∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n + x

∞∑
n= 0

(n+ 1)an+1x
n − 2

∞∑
n= 0

anx
n = 0 .

After appropriately shifting the indices, it follows that

2a2 − 2a0 +

∞∑
n= 1

[(n+ 2)(n+ 1)an+2 − (n+ 1)nan+1 + nan − 2 an]xn = 0.

We find that a2 = a0 and

(n+ 2)(n+ 1)an+2 − (n+ 1)nan+1 + (n− 2)an = 0



146 Chapter 5. Series Solutions of Second Order Linear Equations

for n = 1, 2, . . . . Writing out the individual equations,

3 · 2 a3 − 2 · 1 a2 − a1 = 0

4 · 3 a4 − 3 · 2 a3 = 0

5 · 4 a5 − 4 · 3 a4 + a3 = 0

6 · 5 a6 − 5 · 4 a5 + 2 a4 = 0

...

Since a0 = 0 and a1 = 1 , the remaining coefficients satisfy the equations

3 · 2 a3 − 1 = 0

4 · 3 a4 − 3 · 2 a3 = 0

5 · 4 a5 − 4 · 3 a4 + a3 = 0

6 · 5 a6 − 5 · 4 a5 + 2 a4 = 0

...

That is, a3 = 1/6 , a4 = 1/12 , a5 = 1/24 , a6 = 1/45 , . . . . Hence the series solution
of the initial value problem is

y(x) = x+
1

6
x3 +

1

12
x4 +

1

24
x5 +

1

45
x6 +

13

1008
x7 + . . . .

5.3

2. Let y = φ(x) be a solution of the initial value problem. First note that

y ′′ = −(sin x)y ′ − (cos x)y .

Differentiating twice,

y ′′′ = −(sin x)y ′′ − 2(cos x)y ′ + (sin x)y

y(4) = −(sin x)y ′′′ − 3(cos x)y ′′ + 3(sin x)y ′ + (cos x)y .

Given that φ(0) = 0 and φ ′(0) = 1 , the first equation gives φ ′′(0) = 0 and the last
two equations give φ ′′′(0) = −2 and φ(4)(0) = 0 .
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4. Let y = φ(x) be a solution of the initial value problem. First note that

y ′′ = −x2 y ′ − (sin x)y .

Differentiating twice,

y ′′′ = −x2 y ′′ − (2x+ sin x)y ′ − (cos x)y

y(4) = −x2 y ′′′ − (4x+ sin x)y ′′ − (2 + 2 cos x)y ′ + (sin x)y .

Given that φ(0) = a0 and φ ′(0) = a1, the first equation gives φ ′′(0) = 0 and the
last two equations give φ ′′′(0) = −a0 and φ(4)(0) = −4a1.

5. Clearly, p(x) = 4 and q(x) = 6x are analytic for all x . Hence the series solutions
converge everywhere.

8. The only root of P (x) = x is zero. Hence ρmin = 1 .

12. The Taylor series expansion of ex, about x0 = 0 , is

ex =

∞∑
n= 0

xn

n !
.

Let y = a0 + a1x+ a2x
2 + . . .+ anx

n + . . . . Substituting into the ODE,[ ∞∑
n= 0

xn

n !

][ ∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n

]
+ x

∞∑
n= 0

anx
n = 0 .

First note that

x

∞∑
n= 0

anx
n =

∞∑
n= 1

an−1x
n = a0 x+ a1x

2 + a2x
3 + . . .+ an−1x

n + . . . .

The coefficient of xn in the product of the two series is

cn = 2a2
1

n !
+ 6a3

1

(n− 1) !
+ 12a4

1

(n− 2) !
+ . . .

. . .+ (n+ 1)nan+1 + (n+ 2)(n+ 1)an+2 .

Expanding the individual series, it follows that

2a2 + (2a2 + 6a3)x+ (a2 + 6a3 + 12a4)x2 + (a2 + 6a3 + 12a4 + 20a5)x3 + . . .

. . .+ a0 x+ a1x
2 + a2x

3 + . . . = 0 .

Setting the coefficients equal to zero, we obtain the system 2a2 = 0, 2a2 + 6a3 +
a0 = 0, a2 + 6a3 + 12a4 + a1 = 0 , a2 + 6a3 + 12a4 + 20a5 + a2 = 0 , . . . . Hence the
general solution is

y(x) = a0 + a1x− a0
x3

6
+ (a0 − a1)

x4

12
+ (2a1 − a0)

x5

40
+ (

4

3
a0 − 2a1)

x6

120
+ . . . .

We find that two linearly independent solutions (W (y1, y2)(0) = 1) are

y1(x) = 1− x3

6
+
x4

12
− x5

40
+ . . .
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y2(x) = x− x4

12
+
x5

20
− x6

60
+ . . .

Since p(x) = 0 and q(x) = xe−x converge everywhere, ρ =∞ .

13. The Taylor series expansion of cos x , about x0 = 0 , is

cos x =

∞∑
n= 0

(−1)nx2n

(2n) !
.

Let y = a0 + a1x+ a2x
2 + . . .+ anx

n + . . . . Substituting into the ODE,[ ∞∑
n= 0

(−1)nx2n

(2n) !

][ ∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n

]
+

∞∑
n= 1

nanx
n − 2

∞∑
n= 0

anx
n = 0 .

The coefficient of xn in the product of the two series is

cn = 2a2bn + 6a3bn−1 + 12a4bn−2 + . . .+ (n+ 1)nan+1b1 + (n+ 2)(n+ 1)an+2b0,

in which cos x = b0 + b1x+ b2x
2 + . . .+ bnx

n + . . . . It follows that

2a2 − 2a0 +

∞∑
n= 1

cnx
n +

∞∑
n= 1

(n− 2)anx
n = 0 .

Expanding the product of the series, it follows that

2a2 − 2a0 + 6a3x+(−a2 + 12a4)x2 + (−3a3 + 20a5)x3 + . . .

. . .− a1 x+ a3x
3 + 2a4x

4 + . . . = 0 .

Setting the coefficients equal to zero, a2 − a0 = 0 , 6a3 − a1 = 0 , −a2 + 12a4 = 0 ,
−3a3 + 20a5 + a3 = 0 , . . . . Hence the general solution is

y(x) = a0 + a1x+ a0x
2 + a1

x3

6
+ a0

x4

12
+ a1

x5

60
+ a0

x6

120
+ a1

x7

560
+ . . . .

We find that two linearly independent solutions (W (y1, y2)(0) = 1) are

y1(x) = 1 + x2 +
x4

12
+

x6

120
+ . . .

y2(x) = x+
x3

6
+
x5

60
+

x7

560
+ . . .

The nearest zero of P (x) = cos x is at x = ±π/2 . Hence ρmin = π/2 .

14. The Taylor series expansion of ln(1 + x) , about x0 = 0 , is

ln(1 + x) =

∞∑
n= 1

(−1)n+1xn

n
.

Let y = a0 + a1x+ a2x
2 + . . .+ anx

n + . . . . Substituting into the ODE,[ ∞∑
n= 0

(−1)nxn

n !

] ∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n
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+

[ ∞∑
n= 1

(−1)n+1xn

n

] ∞∑
n= 0

(n+ 1)an+1x
n − x

∞∑
n= 0

anx
n = 0 .

The first product is the series

2a2 + (−2a2 + 6a3)x+ (a2 − 6a3 + 12a4)x2 + (−a2 + 6a3 − 12a4 + 20a5)x3 + . . .

The second product is the series

a1x+ (2a2 − a1/2)x2 + (3a3 − a2 + a1/3)x3 + (4a4 − 3a3/2 + 2a2/3− a1/4)x3 + . . .

Combining the series and equating the coefficients to zero, we obtain

2a2 = 0

−2a2 + 6a3 + a1 − a0 = 0

12a4 − 6a3 + 3a2 − 3a1/2 = 0

20a5 − 12a4 + 9a3 − 3a2 + a1/3 = 0

...

Hence the general solution is

y(x) = a0 + a1x+ (a0 − a1)
x3

6
+ (2a0 + a1)

x4

24
+ a1

7x5

120
+ (

5

3
a1 − a0)

x6

120
+ . . .

We find that two linearly independent solutions (W (y1, y2)(0) = 1) are

y1(x) = 1 +
x3

6
+
x4

12
− x6

120
+ . . .

y2(x) = x− x3

6
+
x4

24
+

7x5

120
+ . . .

The coefficient p(x) = ex ln(1 + x) is analytic at x0 = 0, but its power series has a
radius of convergence ρ = 1.

15. If y1 = x and y2 = x2 are solutions, then substituting y2 into the ODE results
in

2P (x) + 2xQ(x) + x2R(x) = 0 .

Setting x = 0 , we find that P (0) = 0 . Similarly, substituting y1 into the ODE
results in Q(0) = 0 . Therefore P (x)/Q(x) and R(x)/P (x) may not be analytic.
If they were, Theorem 3.2.1 would guarantee that y1 and y2 were the only two
solutions. But note that an arbitrary value of y(0) cannot be a linear combination
of y1(0) and y2(0). Hence x0 = 0 must be a singular point.

16. Let y = a0 + a1x+ a2x
2 + . . .+ anx

n + . . . . Substituting into the ODE,

∞∑
n= 0

(n+ 1)an+1 x
n −

∞∑
n= 0

anx
n = 0 .

That is,
∞∑
n= 0

[(n+ 1)an+1 − an]xn = 0 .
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Setting the coefficients equal to zero, we obtain

an+1 =
an
n+ 1

for n = 0, 1, 2, . . . . It is easy to see that an = a0/(n !) . Therefore the general
solution is

y(x) = a0

[
1 + x+

x2

2 !
+
x3

3 !
+ . . .

]
= a0e

x.

The coefficient a0 = y(0), which can be arbitrary.

17. Let y = a0 + a1x+ a2x
2 + . . .+ anx

n + . . . . Substituting into the ODE,

∞∑
n= 0

(n+ 1)an+1 x
n − x

∞∑
n= 0

anx
n = 0 .

That is,
∞∑
n= 0

(n+ 1)an+1 x
n −

∞∑
n= 1

an−1x
n = 0 .

Combining the series, we have

a1 +

∞∑
n= 1

[(n+ 1)an+1 − an−1] xn = 0 .

Setting the coefficient equal to zero, a1 = 0 and an+1 = an−1/(n+ 1) for n = 1, 2, . . ..
Note that the indices differ by two, so for k = 1, 2, . . .

a2k =
a2k−2

(2k)
=

a2k−4

(2k − 2)(2k)
= . . . =

a0

2 · 4 . . . (2k)

and

a2k+1 = 0 .

Hence the general solution is

y(x) = a0

[
1 +

x2

2
+

x4

22 2 !
+

x6

23 3 !
+ . . .+

x2n

2n n !
+ . . .

]
= a0e

x2/2.

The coefficient a0 = y(0), which can be arbitrary.

19. Let y = a0 + a1x+ a2x
2 + . . .+ anx

n + . . . . Substituting into the ODE,

(1− x)

∞∑
n= 0

(n+ 1)an+1 x
n −

∞∑
n= 0

anx
n = 0 .

That is,
∞∑
n= 0

(n+ 1)an+1 x
n −

∞∑
n= 1

nan x
n −

∞∑
n= 0

anx
n = 0 .

Combining the series, we have

a1 − a0 +

∞∑
n= 1

[(n+ 1)an+1 − nan − an] xn = 0 .
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Setting the coefficients equal to zero, a1 = a0 and an+1 = an for n = 0, 1, 2, . . . .
Hence the general solution is

y(x) = a0

[
1 + x+ x2 + x3 + . . .+ xn + . . .

]
= a0

1

1− x
.

The coefficient a0 = y(0), which can be arbitrary.

21. Let y = a0 + a1x+ a2x
2 + . . .+ anx

n + . . . . Substituting into the ODE,

∞∑
n= 0

(n+ 1)an+1 x
n + x

∞∑
n= 0

anx
n = 1 + x .

That is,
∞∑
n= 0

(n+ 1)an+1 x
n +

∞∑
n= 1

an−1x
n = 1 + x .

Combining the series, and the nonhomogeneous terms, we have

(a1 − 1) + (2a2 + a0 − 1)x+

∞∑
n= 2

[(n+ 1)an+1 + an−1] xn = 0 .

Setting the coefficients equal to zero, we obtain a1 = 1 , 2a2 + a0 − 1 = 0 , and

an = −an−2

n
, n = 3, 4, . . . .

The indices differ by two, so for k = 2, 3, . . .

a2k = −a2k−2

(2k)
=

a2k−4

(2k − 2)(2k)
= . . . =

(−1)k−1 a2

4 · 6 . . . (2k)
=

(−1)k(a0 − 1)

2 · 4 · 6 . . . (2k)
,

and for k = 1, 2, . . .

a2k+1 = − a2k−1

(2k + 1)
=

a2k−3

(2k − 1)(2k + 1)
= . . . =

(−1)k

3 · 5 . . . (2k + 1)
.

Hence the general solution is

y(x) = a0 + x+
1− a0

2
x2 − x3

3
+ a0

x4

22 2 !
+

x5

3 · 5
− a0

x6

23 3 !
− . . .

Collecting the terms containing a0,

y(x) = a0

[
1− x2

2
+

x4

22 2 !
− x6

23 3 !
+ . . .

]

+

[
x+

x2

2
− x3

3
− x4

22 2 !
+

x5

3 · 5
+

x6

23 3 !
− x7

3 · 5 · 7
+ . . .

]
.

Upon inspection, we find that

y(x) = a0e
−x2/2 +

[
x+

x2

2
− x3

3
− x4

22 2 !
+

x5

3 · 5
+

x6

23 3 !
− x7

3 · 5 · 7
+ . . .

]
.
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Note that the given ODE is first order linear, with integrating factor µ(x) = ex
2/2.

The general solution is given by

y(x) = e−x
2/2

∫ x

0

eu
2/2du+ (y(0)− 1)e−x

2/2 + 1 .

23. If α = 0 , then y1(x) = 1 . If α = 2n , then a2m = 0 for m ≥ n+ 1 . As a result,

y1(x) = 1

+

n∑
m= 1

(−1)m
2mn(n− 1) . . . (n−m+ 1)(2n+ 1)(2n+ 3) . . . (2n+ 2m− 1)

(2m)!
x2m.

α = 0 1

α = 2 1− 3x2

α = 4 1− 10x2 + 35
3 x

4

If α = 2n+ 1 , then a2m+1 = 0 for m ≥ n+ 1 . As a result,

y2(x) = x

+

n∑
m= 1

(−1)m
2mn(n− 1) . . . (n−m+ 1)(2n+ 3)(2n+ 5) . . . (2n+ 2m+ 1)

(2m+ 1)!
x2m+1.

α = 1 x

α = 3 x− 5
3x

3

α = 5 x− 14
3 x

3 + 21
5 x

5

24.(a) Based on Problem 23,

α = 0 1 y1(1) = 1

α = 2 1− 3x2 y1(1) = −2

α = 4 1− 10x2 + 35
3 x

4 y1(1) = 8
3

Normalizing the polynomials, we obtain

P0(x) = 1

P2(x) = −1

2
+

3

2
x2

P4(x) =
3

8
− 15

4
x2 +

35

8
x4

α = 1 x y2(1) = 1

α = 3 x− 5
3x

3 y2(1) = − 2
3

α = 5 x− 14
3 x

3 + 21
5 x

5 y2(1) = 8
15

Similarly,
P1(x) = x

P3(x) = −3

2
x+

5

2
x3

P5(x) =
15

8
x− 35

4
x3 +

63

8
x5
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(b)

(c) P0(x) has no roots. P1(x) has one root at x = 0 . The zeros of P2(x) are at
x = ± 1/

√
3 . The zeros of P3(x) are x = 0,±

√
3/5 . The roots of P4(x) are given

by x2 = (15 + 2
√

30)/35 , (15− 2
√

30)/35 . The roots of P5(x) are given by x = 0
and x2 = (35 + 2

√
70)/63 , (35− 2

√
70)/63 .

25. Observe that

Pn(−1) =
(−1)n

2n

[n/2]∑
k= 0

(−1)k(2n− 2k)!

k !(n− k)!(n− 2k)!
= (−1)nPn(1) .

But Pn(1) = 1 for all nonnegative integers n.

27. We have

(x2 − 1)n =

n∑
k= 0

(−1)n−k n !

k !(n− k)!
x2k,

which is a polynomial of degree 2n. Differentiating n times,

dn

dxn
(x2 − 1)n =

n∑
k=µ

(−1)n−k n !

k !(n− k)!
(2k)(2k − 1) . . . (2k − n+ 1)x2k−n,

in which the lower index is µ = [n/2] + 1 . Note that if n = 2m+ 1, then µ = m+ 1 .
Now shift the index, by setting k = n− j. Hence

dn

dxn
(x2 − 1)n =

[n/2]∑
j= 0

(−1)j n !

(n− j)!j !
(2n− 2j)(2n− 2j − 1) . . . (n− 2j + 1)xn−2j

= n!

[n/2]∑
j= 0

(−1)j(2n− 2j)!

(n− j)!j !(n− 2j)!
xn−2j .

Based on Problem 25,
dn

dxn
(x2 − 1)n = n! 2nPn(x).
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29. Since the n+ 1 polynomials P0, P1, . . ., Pn are linearly independent, and
the degree of Pk is k , any polynomial f of degree n can be expressed as a linear
combination

f(x) =

n∑
k= 0

akPk(x) .

Multiplying both sides by Pm and integrating,∫ 1

−1

f(x)Pm(x)dx =

n∑
k= 0

ak

∫ 1

−1

Pk(x)Pm(x)dx .

Based on Problem 28, ∫ 1

−1

Pk(x)Pm(x)dx =
2

2m+ 1
δkm.

Hence ∫ 1

−1

f(x)Pm(x)dx =
2

2m+ 1
am .

5.4

1. Substitution of y = xr results in the quadratic equation F (r) = 0, where F (r) =
r(r − 1) + 4r + 2 = r2 + 3r + 2. The roots are r = −2 , −1 . Hence the general
solution, for x 6= 0 , is y = c1 x

−2 + c2 x
−1.

3. Substitution of y = xr results in the quadratic equation F (r) = 0 , where F (r) =
r(r − 1)− 3r + 4 = r2 − 4r + 4. The root is r = 2 , with multiplicity two. Hence
the general solution, for x 6= 0 , is y = (c1 + c2 ln |x|)x2.

5. Substitution of y = xr results in the quadratic equation F (r) = 0 , where F (r) =
r(r − 1)− r + 1 = r2 − 2r + 1. The root is r = 1 , with multiplicity two. Hence the
general solution, for x 6= 0 , is y = (c1 + c2 ln |x|)x.

6. Substitution of y = (x− 1)r results in the quadratic equation F (r) = 0 , where
F (r) = r2 + 7r + 12. The roots are r = −3 , −4 . Hence the general solution, for
x 6= 1 , is y = c1 (x− 1)−3 + c2(x− 1)−4.

7. Substitution of y = xr results in the quadratic equation F (r) = 0 , where F (r) =
r2 + 5r − 1. The roots are r = −(5 ±

√
29)/2 . Hence the general solution, for

x 6= 0 , is y = c1 |x|−(5 +
√

29)/2
+ c2 |x|−(5−

√
29)/2

.

8. Substitution of y = xr results in the quadratic equation F (r) = 0 , where F (r) =
r2 − 3r + 3. The roots are complex, with r = (3 ± i

√
3 )/2 . Hence the general

solution, for x 6= 0, is

y = c1 |x|3/2 cos(

√
3

2
ln |x|) + c2 |x|3/2 sin(

√
3

2
ln |x|).
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10. Substitution of y = (x− 2)r results in the quadratic equation F (r) = 0 , where
F (r) = r2 + 4r + 8. The roots are complex, with r = −2 ± 2i . Hence the general
solution, for x 6= 2, is y = c1 (x− 2)−2 cos(2 ln |x− 2|) + c2(x− 2)−2 sin(2 ln |x− 2|).

11. Substitution of y = xr results in the quadratic equation F (r) = 0 , where
F (r) = r2 + r + 4. The roots are complex, with r = −(1 ± i

√
15 )/2 . Hence the

general solution, for x 6= 0, is

y = c1 |x|−1/2
cos(

√
15

2
ln |x|) + c2 |x|−1/2

sin(

√
15

2
ln |x|).

12. Substitution of y = xr results in the quadratic equation F (r) = 0 , where
F (r) = r2 − 5r + 4. The roots are r = 1 , 4 . Hence the general solution is y =
c1 x+ c2 x

4.

14. Substitution of y = xr results in the quadratic equation F (r) = 0 , where
F (r) = 4r2 + 4r + 17. The roots are complex, with r = −1/2 ± 2i . Hence the
general solution, for x > 0, is y = c1 x

−1/2 cos(2 ln x) + c2 x
−1/2 sin(2 ln x). Invok-

ing the initial conditions, we obtain the system of equations

c1 = 2, −1

2
c1 + 2c2 = −3.

Hence the solution of the initial value problem is

y(x) = 2x−1/2 cos(2 ln x)− x−1/2 sin(2 ln x).

As x → 0+, the solution decreases without bound.

15. Substitution of y = xr results in the quadratic equation F (r) = 0 , where
F (r) = r2 − 4r + 4. The root is r = 2 , with multiplicity two. Hence the general
solution, for x < 0 , is y = (c1 + c2 ln |x|)x2. Invoking the initial conditions, we
obtain the system of equations

c1 = 2, −2c1 − c2 = 3.

Hence the solution of the initial value problem is

y(x) = (2− 7 ln |x|)x2.
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We find that y(x) → 0 as x → 0−.

18. We see that P (x) = 0 when x = 0 and 1 . Since the three coefficients have no
factors in common, both of these points are singular points. Near x = 0,

lim
x→0

x p(x) = lim
x→0

x
2x

x2(1− x)2
= 2 .

lim
x→0

x2q(x) = lim
x→0

x2 4

x2(1− x)2
= 4 .

The singular point x = 0 is regular. Considering x = 1,

lim
x→1

(x− 1)p(x) = lim
x→1

(x− 1)
2x

x2(1− x)2
.

The latter limit does not exist. Hence x = 1 is an irregular singular point.

19. P (x) = 0 when x = 0 and 1 . Since the three coefficients have no common
factors, both of these points are singular points. Near x = 0,

lim
x→0

x p(x) = lim
x→0

x
x− 2

x2(1− x)
.

The limit does not exist, and so x = 0 is an irregular singular point. Considering
x = 1,

lim
x→1

(x− 1)p(x) = lim
x→1

(x− 1)
x− 2

x2(1− x)
= 1 .

lim
x→1

(x− 1)2q(x) = lim
x→1

(x− 1)2 −3x

x2(1− x)
= 0 .

Hence x = 1 is a regular singular point.

20. P (x) = 0 when x = 0 and ± 1 . Since the three coefficients have no common
factors, both of these points are singular points. Near x = 0,

lim
x→0

x p(x) = lim
x→0

x
2

x3(1− x2)
.

The limit does not exist, and so x = 0 is an irregular singular point. Near x = −1,

lim
x→−1

(x+ 1)p(x) = lim
x→−1

(x+ 1)
2

x3(1− x2)
= −1 .
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lim
x→−1

(x+ 1)2q(x) = lim
x→−1

(x+ 1)2 2

x3(1− x2)
= 0 .

Hence x = −1 is a regular singular point. At x = 1 ,

lim
x→1

(x− 1)p(x) = lim
x→1

(x− 1)
2

x3(1− x2)
= −1 .

lim
x→1

(x− 1)2q(x) = lim
x→1

(x− 1)2 2

x3(1− x2)
= 0 .

Hence x = 1 is a regular singular point.

22. The only singular point is at x = 0 . We find that

lim
x→0

x p(x) = lim
x→0

x
x

x2
= 1 .

lim
x→0

x2q(x) = lim
x→0

x2 x
2 − ν2

x2
= −ν2.

Hence x = 0 is a regular singular point.

23. The only singular point is at x = −3 . We find that

lim
x→−3

(x+ 3)p(x) = lim
x→−3

(x+ 3)
−2x

x+ 3
= 6 .

lim
x→−3

(x+ 3)2q(x) = lim
x→−3

(x+ 3)2 1− x2

x+ 3
= 0.

Hence x = −3 is a regular singular point.

24. Dividing the ODE by x(1− x2)3, we find that

p(x) =
1

x(1− x2)
and q(x) =

2

x(1 + x)2(1− x)3
.

The singular points are at x = 0 and ± 1 . For x = 0,

lim
x→0

x p(x) = lim
x→0

x
1

x(1− x2)
= 1 .

lim
x→0

x2q(x) = lim
x→0

x2 2

x(1 + x)2(1− x)3
= 0 .

Hence x = 0 is a regular singular point. For x = −1,

lim
x→−1

(x+ 1)p(x) = lim
x→−1

(x+ 1)
1

x(1− x2)
= −1

2
.

lim
x→−1

(x+ 1)2q(x) = lim
x→−1

(x+ 1)2 2

x(1 + x)2(1− x)3
= −1

4
.

Hence x = −1 is a regular singular point. For x = 1,

lim
x→1

(x− 1)p(x) = lim
x→1

(x− 1)
1

x(1− x2)
= −1

2
.
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lim
x→1

(x− 1)2q(x) = lim
x→1

(x− 1)2 2

x(1 + x)2(1− x)3
.

The latter limit does not exist. Hence x = 1 is an irregular singular point.

25. Dividing the ODE by (x+ 2)2(x− 1), we find that

p(x) =
3

(x+ 2)2
and q(x) =

−2

(x+ 2)(x− 1)
.

The singular points are at x = −2 and 1 . For x = −2,

lim
x→−2

(x+ 2)p(x) = lim
x→−2

(x+ 2)
3

(x+ 2)2
.

The limit does not exist. Hence x = −2 is an irregular singular point. For x = 1,

lim
x→1

(x− 1)p(x) = lim
x→1

(x− 1)
3

(x+ 2)2
= 0 .

lim
x→1

(x− 1)2q(x) = lim
x→1

(x− 1)2 −2

(x+ 2)(x− 1)
= 0 .

Hence x = 1 is a regular singular point.

26. P (x) = 0 when x = 0 and 3 . Since the three coefficients have no common
factors, both of these points are singular points. Near x = 0,

lim
x→0

x p(x) = lim
x→0

x
x+ 1

x(3− x)
=

1

3
.

lim
x→0

x2q(x) = lim
x→0

x2 −2

x(3− x)
= 0 .

Hence x = 0 is a regular singular point. For x = 3,

lim
x→3

(x− 3)p(x) = lim
x→3

(x− 3)
x+ 1

x(3− x)
= −4

3
.

lim
x→3

(x− 3)2q(x) = lim
x→3

(x− 3)2 −2

x(3− x)
= 0 .

Hence x = 3 is a regular singular point.

27. Dividing the ODE by (x2 + x− 2), we find that

p(x) =
x+ 1

(x+ 2)(x− 1)
and q(x) =

2

(x+ 2)(x− 1)
.

The singular points are at x = −2 and 1 . For x = −2,

lim
x→−2

(x+ 2)p(x) = lim
x→−2

x+ 1

x− 1
=

1

3
.

lim
x→−2

(x+ 2)2q(x) = lim
x→−2

2(x+ 2)

x− 1
= 0 .
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Hence x = −2 is a regular singular point. For x = 1,

lim
x→1

(x− 1)p(x) = lim
x→1

x+ 1

x+ 2
=

2

3
.

lim
x→1

(x− 1)2q(x) = lim
x→1

2(x− 1)

(x+ 2)
= 0 .

Hence x = 1 is a regular singular point.

29. Note that p(x) = ln |x| and q(x) = 3x . Evidently, p(x) is not analytic at
x0 = 0 . Furthermore, the function x p(x) = x ln |x| does not have a Taylor series
about x0 = 0. Hence x = 0 is an irregular singular point.

30. P (x) = 0 when x = 0 . Since the three coefficients have no common factors,
x = 0 is a singular point. The Taylor series of ex − 1, about x = 0, is

ex − 1 = x+ x2/2 + x3/6 + . . . .

Hence the function x p(x) = 2(ex − 1)/x is analytic at x = 0 . Similarly, the Taylor
series of e−x cos x , about x = 0, is

e−x cos x = 1− x+ x3/3− x4/6 + . . . .

The function x2q(x) = e−x cos x is also analytic at x = 0 . Hence x = 0 is a regular
singular point.

31. P (x) = 0 when x = 0 . Since the three coefficients have no common factors,
x = 0 is a singular point. The Taylor series of sin x , about x = 0, is

sin x = x− x3/3! + x5/5!− . . . .

Hence the function x p(x) = −3 sin x/x is analytic at x = 0 . On the other hand,
q(x) is a rational function, with

lim
x→0

x2q(x) = lim
x→0

x2 1 + x2

x2
= 1 .

Hence x = 0 is a regular singular point.

32. P (x) = 0 when x = 0 . Since the three coefficients have no common factors,
x = 0 is a singular point. We find that

lim
x→0

x p(x) = lim
x→0

x
1

x
= 1 .

Although the function R(x) = cot x does not have a Taylor series about x = 0 ,
note that x2q(x) = x cot x = 1− x2/3− x4/45− 2x6/945− . . . . Hence x = 0 is a
regular singular point. Furthermore, q(x) = cot x/x2 is undefined at x = ±nπ .
Therefore the points x = ±nπ are also singular points. First note that

lim
x→±nπ

(x∓ nπ)p(x) = lim
x→±nπ

(x∓ nπ)
1

x
= 0 .
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Furthermore, since cot x has period π ,

q(x) = cot x/x = cot(x ∓ nπ)/x = cot(x ∓ nπ)
1

(x ∓ nπ) ± nπ
.

Therefore

(x ∓ nπ)2q(x) = (x ∓ nπ) cot(x ∓ nπ)

[
(x ∓ nπ)

(x ∓ nπ) ± nπ

]
.

From above,

(x ∓ nπ) cot(x ∓ nπ) = 1− (x ∓ nπ)2/3− (x ∓ nπ)4/45− . . . .

Note that the function in brackets is analytic near x = ±nπ. It follows that the
function (x ∓ nπ)2q(x) is also analytic near x = ±nπ . Hence all the singular
points are regular.

34. The singular points are located at x = ±nπ , n = 0, 1, . . . . Dividing the ODE
by x sin x , we find that x p(x) = 3 csc x and x2q(x) = x2 csc x . Evidently, x p(x)
is not even defined at x = 0. Hence x = 0 is an irregular singular point. On the
other hand, the Taylor series of x csc x, about x = 0, is

x csc x = 1 + x2/6 + 7x4360 + . . . .

Noting that csc(x ∓ nπ) = (−1)n csc x ,

(x ∓ nπ)p(x) = 3(−1)n(x ∓ nπ) csc(x ∓ nπ)/x

= 3(−1)n(x ∓ nπ) csc(x ∓ nπ)

[
1

(x ∓ nπ) ± nπ

]
.

It is apparent that (x ∓ nπ)p(x) is analytic at x = ±nπ . Similarly,

(x ∓ nπ)2q(x) = (x ∓ nπ)2 csc x = (−1)n(x ∓ nπ)2 csc(x ∓ nπ),

which is also analytic at x = ±nπ . Hence all other singular points are regular.

36. Substitution of y = xr results in the quadratic equation r2 − r + β = 0 . The
roots are

r =
1 ±

√
1− 4β

2
.

If β > 1/4 , the roots are complex, with r1,2 = (1 ± i
√

4β − 1 )/2 . Hence the
general solution, for x 6= 0 , is

y = c1 |x|1/2 cos(
1

2

√
4β − 1 ln |x|) + c2 |x|1/2 sin(

1

2

√
4β − 1 ln |x|).

Since the trigonometric factors are bounded, y(x) → 0 as x → 0 . If β = 1/4 , the
roots are equal, and

y = c1 |x|1/2 + c2 |x|1/2 ln |x| .

Since limx→ 0

√
|x| ln |x| = 0 , y(x) → 0 as x → 0 . If β < 1/4 , the roots are real,

with r1,2 = (1 ±
√

1− 4β )/2 . Hence the general solution, for x 6= 0 , is

y = c1 |x|1/2+
√

1−4β/2
+ c2 |x|1/2−

√
1−4β/2

.
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Evidently, solutions approach zero as long as 1/2−
√

1− 4β/2 > 0 . That is,

0 < β < 1/4 .

Hence all solutions approach zero for β > 0 .

37. Substitution of y = xr results in the quadratic equation r2 − r − 2 = 0 . The
roots are r = −1 , 2 . Hence the general solution, for x 6= 0 , is y = c1x

−1 + c2 x
2.

Invoking the initial conditions, we obtain the system of equations

c1 + c2 = 1, −c1 + 2c2 = γ

Hence the solution of the initial value problem is

y(x) =
2− γ

3
x−1 +

1 + γ

3
x2.

The solution is bounded, as x → 0 , if γ = 2 .

38. Substitution of y = xr results in the quadratic equation r2 + (α− 1)r + 5/2 =
0 . Formally, the roots are given by

r =
1− α ±

√
α2 − 2α− 9

2
=

1− α ±
√

(α− 1−
√

10)(α− 1 +
√

10)

2
.

(i) The roots will be complex if |1− α| <
√

10 . For solutions to approach zero, as
x → ∞ , we need −

√
10 < 1− α < 0 .

(ii) The roots will be equal if |1− α| =
√

10 . In this case, all solutions approach
zero as long as 1− α = −

√
10 .

(iii) The roots will be real and distinct if |1− α| >
√

10 . It follows that

rmax =
1− α +

√
α2 − 2α− 9

2
.

For solutions to approach zero, we need 1− α +
√
α2 − 2α− 9 < 0 . That is,

1− α < −
√

10 . Hence all solutions approach zero, as x → ∞ , as long as α > 1 .

42. x = 0 is the only singular point. Dividing the ODE by 2x2, we have p(x) =
3/(2x) and q(x) = −x−2(1 + x)/2. It follows that

lim
x→0

x p(x) = lim
x→0

x
3

2x
=

3

2
,

lim
x→0

x2q(x) = lim
x→0

x2−(1 + x)

2x2
= −1

2
,

so x = 0 is a regular singular point. Let y = a0 + a1x+ a2x
2 + . . .+ anx

n + . . ..
Substitution into the ODE results in

2x2
∞∑
n= 0

(n+ 2)(n+ 1)an+2 x
n + 3x

∞∑
n= 0

(n+ 1)an+1x
n − (1 + x)

∞∑
n= 0

anx
n = 0 .
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That is,

2

∞∑
n= 2

n(n− 1)an x
n + 3

∞∑
n= 1

nanx
n −

∞∑
n= 0

anx
n −

∞∑
n= 1

an−1x
n = 0 .

It follows that

−a0 + (2a1 − a0)x+

∞∑
n= 2

[2n(n− 1)an + 3nan − an − an−1]xn = 0 .

Equating the coefficients to zero, we find that a0 = 0 , 2a1 − a0 = 0 , and

(2n− 1)(n+ 1)an = an−1 , n = 2, 3, . . . .

We conclude that all the an are equal to zero. Hence y(x) = 0 is the only solution
that can be obtained.

44. Based on Problem 43, the change of variable, x = 1/ξ , transforms the ODE
into the form

ξ4 d
2y

dξ2
+ 2ξ3 dy

dξ
+ y = 0 .

Evidently, ξ = 0 is a singular point. Now p(ξ) = 2/ξ and q(ξ) = 1/ξ4. Since the
value of limξ→0 ξ

2q(ξ) does not exist, ξ = 0 (x =∞ ) is an irregular singular point.

46. Under the transformation x = 1/ξ , the ODE becomes

ξ4(1− 1

ξ2
)
d2y

dξ2
+

[
2ξ3(1− 1

ξ2
) + 2ξ2 1

ξ

]
dy

dξ
+ α(α+ 1)y = 0 ,

that is,

(ξ4 − ξ2)
d2y

dξ2
+ 2ξ3 dy

dξ
+ α(α+ 1)y = 0 .

Therefore ξ = 0 is a singular point. Note that

p(ξ) =
2ξ

ξ2 − 1
and q(ξ) =

α(α+ 1)

ξ2(ξ2 − 1)
.

It follows that

lim
ξ→0

ξ p(ξ) = lim
ξ→0

ξ
2ξ

ξ2 − 1
= 0 ,

lim
ξ→0

ξ2q(ξ) = lim
ξ→0

ξ2 α(α+ 1)

ξ2(ξ2 − 1)
= −α(α+ 1) .

Hence ξ = 0 (x =∞) is a regular singular point.

48. Under the transformation x = 1/ξ , the ODE becomes

ξ4 d
2y

dξ2
+

[
2ξ3 + 2ξ2 1

ξ

]
dy

dξ
+ λ y = 0 ,

that is,

ξ4 d
2y

dξ2
+ 2(ξ3 + ξ)

dy

dξ
+ λ y = 0 .
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Therefore ξ = 0 is a singular point. Note that

p(ξ) =
2(ξ2 + 1)

ξ3
and q(ξ) =

λ

ξ4
.

It immediately follows that the limit limξ→0 ξ p(ξ) does not exist. Hence ξ = 0
(x =∞) is an irregular singular point.

49. Under the transformation x = 1/ξ , the ODE becomes

ξ4 d
2y

dξ2
+ 2ξ3 dy

dξ
− 1

ξ
y = 0 .

Therefore ξ = 0 is a singular point. Note that

p(ξ) =
2

ξ
and q(ξ) =

−1

ξ5
.

We find that

lim
ξ→0

ξ p(ξ) = lim
ξ→0

ξ
2

ξ
= 2 ,

but

lim
ξ→0

ξ2q(ξ) = lim
ξ→0

ξ2 (−1)

ξ5
.

The latter limit does not exist. Hence ξ = 0 (x =∞) is an irregular singular point.

5.5

1.(a) P (x) = 0 when x = 0 . Since the three coefficients have no common factors,
x = 0 is a singular point. Near x = 0,

lim
x→0

x p(x) = lim
x→0

x
1

2x
=

1

2
.

lim
x→0

x2q(x) = lim
x→0

x2 1

2
= 0 .

Hence x = 0 is a regular singular point.

(b) Let

y = xr(a0 + a1x+ a2x
2 + . . .+ anx

n + . . .) =

∞∑
n= 0

an x
r+n.

Then

y ′ =

∞∑
n= 0

(r + n)anx
r+n−1

and

y ′′ =

∞∑
n= 0

(r + n)(r + n− 1)anx
r+n−2.
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Substitution into the ODE results in

2

∞∑
n= 0

(r + n)(r + n− 1)an x
r+n−1 +

∞∑
n= 0

(r + n)anx
r+n−1 +

∞∑
n= 0

anx
r+n+1 = 0 .

That is,

2

∞∑
n= 0

(r + n)(r + n− 1)an x
r+n +

∞∑
n= 0

(r + n)anx
r+n +

∞∑
n= 2

an−2 x
r+n = 0 .

It follows that

a0 [2r(r − 1) + r]xr + a1 [2(r + 1)r + r + 1]xr+1

+

∞∑
n= 2

[2(r + n)(r + n− 1)an + (r + n)an + an−2]xr+n = 0 .

Assuming that a0 6= 0 , we obtain the indicial equation 2r2 − r = 0, with roots
r1 = 1/2 and r2 = 0 . It immediately follows that a1 = 0 . Setting the remaining
coefficients equal to zero, we have

an =
−an−2

(r + n) [2(r + n)− 1]
, n = 2, 3, . . . .

(c) For r = 1/2 , the recurrence relation becomes

an =
−an−2

n(1 + 2n)
, n = 2, 3, . . . .

Since a1 = 0 , the odd coefficients are zero. Furthermore, for k = 1, 2, . . . ,

a2k =
−a2k−2

2k(1 + 4k)
=

a2k−4

(2k − 2)(2k)(4k − 3)(4k + 1)
=

(−1)ka0

2k k! 5 · 9 · 13 . . . (4k + 1)
.

(d) For r = 0 , the recurrence relation becomes

an =
−an−2

n(2n− 1)
, n = 2, 3, . . . .

Since a1 = 0 , the odd coefficients are zero, and for k = 1, 2, . . . ,

a2k =
−a2k−2

2k(4k − 1)
=

a2k−4

(2k − 2)(2k)(4k − 5)(4k − 1)
=

(−1)ka0

2k k! 3 · 7 · 11 . . . (4k − 1)
.

The two linearly independent solutions are

y1(x) =
√
x

[
1 +

∞∑
k= 1

(−1)k x2k

2k k! 5 · 9 · 13 . . . (4k + 1)

]

y2(x) = 1 +

∞∑
k= 1

(−1)k x2k

2k k! 3 · 7 · 11 . . . (4k − 1)
.

3.(a) Note that x p(x) = 0 and x2q(x) = x , which are both analytic at x = 0 .
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(b) Set y = xr(a0 + a1x+ a2x
2 + . . .+ anx

n + . . .). Substitution into the ODE re-
sults in

∞∑
n= 0

(r + n)(r + n− 1)an x
r+n−1 +

∞∑
n= 0

anx
r+n = 0 ,

and after multiplying both sides of the equation by x ,

∞∑
n= 0

(r + n)(r + n− 1)an x
r+n +

∞∑
n= 1

an−1x
r+n = 0 .

It follows that

a0 [r(r − 1)]xr +
∞∑
n= 1

[(r + n)(r + n− 1)an + an−1]xr+n = 0 .

Setting the coefficients equal to zero, the indicial equation is r(r − 1) = 0 . The
roots are r1 = 1 and r2 = 0 . Here r1 − r2 = 1 . The recurrence relation is

an =
−an−1

(r + n)(r + n− 1)
, n = 1, 2, . . . .

(c) For r = 1 ,

an =
−an−1

n(n+ 1)
, n = 1, 2, . . . .

Hence for n ≥ 1 ,

an =
−an−1

n(n+ 1)
=

an−2

(n− 1)n2(n+ 1)
= . . . =

(−1)na0

n!(n+ 1)!
.

Therefore one solution is

y1(x) = x

∞∑
n= 0

(−1)n xn

n!(n+ 1)!
.

5.(a) Here x p(x) = 2/3 and x2q(x) = x2/3 , which are both analytic at x = 0 .

(b) Set y = xr(a0 + a1x+ a2x
2 + . . .+ anx

n + . . .). Substitution into the ODE re-
sults in

3

∞∑
n= 0

(r + n)(r + n− 1)an x
r+n + 2

∞∑
n= 0

(r + n)an x
r+n +

∞∑
n= 0

anx
r+n+2 = 0 .

It follows that

a0 [3r(r − 1) + 2r]xr + a1 [3(r + 1)r + 2(r + 1)]xr+1

+

∞∑
n= 2

[3(r + n)(r + n− 1)an + 2(r + n)an + an−2]xr+n = 0 .

Assuming a0 6= 0, the indicial equation is 3r2 − r = 0, with roots r1 = 1/3, r2 = 0.
Setting the remaining coefficients equal to zero, we have a1 = 0 , and

an =
−an−2

(r + n) [3(r + n)− 1]
, n = 2, 3, . . . .
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It immediately follows that the odd coefficients are equal to zero.

(c) For r = 1/3 ,

an =
−an−2

n(1 + 3n)
, n = 2, 3, . . . .

So for k = 1, 2, . . . ,

a2k =
−a2k−2

2k(6k + 1)
=

a2k−4

(2k − 2)(2k)(6k − 5)(6k + 1)
=

(−1)ka0

2k k! 7 · 13 . . . (6k + 1)
.

(d) For r = 0 ,

an =
−an−2

n(3n− 1)
, n = 2, 3, . . . .

So for k = 1, 2, . . . ,

a2k =
−a2k−2

2k(6k − 1)
=

a2k−4

(2k − 2)(2k)(6k − 7)(6k − 1)
=

(−1)ka0

2k k! 5 · 11 . . . (6k − 1)
.

The two linearly independent solutions are

y1(x) = x1/3

[
1 +

∞∑
k= 1

(−1)k

k! 7 · 13 . . . (6k + 1)
(
x2

2
)k

]

y2(x) = 1 +

∞∑
k= 1

(−1)k

k! 5 · 11 . . . (6k − 1)
(
x2

2
)k .

6.(a) Note that x p(x) = 1 and x2q(x) = x− 2, which are both analytic at x = 0 .

(b) Set y = xr(a0 + a1x+ a2x
2 + . . .+ anx

n + . . .). Substitution into the ODE re-
sults in

∞∑
n= 0

(r + n)(r + n− 1)an x
r+n +

∞∑
n= 0

(r + n)an x
r+n

+

∞∑
n= 0

anx
r+n+1 − 2

∞∑
n= 0

anx
r+n = 0 .

After adjusting the indices in the second-to-last series, we obtain

a0 [r(r − 1) + r − 2]xr

+

∞∑
n= 1

[(r + n)(r + n− 1)an + (r + n)an − 2 an + an−1]xr+n = 0.

Assuming a0 6= 0 , the indicial equation is r2 − 2 = 0 , with roots r = ±
√

2 . Set-
ting the remaining coefficients equal to zero, the recurrence relation is

an =
−an−1

(r + n)2 − 2
, n = 1, 2, . . . .

Note that (r + n)2 − 2 = (r + n+
√

2 )(r + n−
√

2 ).
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(c) For r =
√

2 ,

an =
−an−1

n(n+ 2
√

2 )
, n = 1, 2, . . . .

It follows that

an =
(−1)na0

n!(1 + 2
√

2 )(2 + 2
√

2 ) . . . (n+ 2
√

2 )
, n = 1, 2, . . . .

(d) For r = −
√

2 ,

an =
−an−1

n(n− 2
√

2 )
, n = 1, 2, . . . ,

and therefore

an =
(−1)na0

n!(1− 2
√

2 )(2− 2
√

2 ) . . . (n− 2
√

2 )
, n = 1, 2, . . . .

The two linearly independent solutions are

y1(x) = x
√

2

[
1 +

∞∑
n= 1

(−1)n xn

n!(1 + 2
√

2 )(2 + 2
√

2 ) . . . (n+ 2
√

2 )

]

y2(x) = x−
√

2

[
1 +

∞∑
n= 1

(−1)n xn

n!(1− 2
√

2 )(2− 2
√

2 ) . . . (n− 2
√

2 )

]
.

7.(a) Here x p(x) = 1− x and x2q(x) = −x , which are both analytic at x = 0 .

(b) Set y = xr(a0 + a1x+ a2x
2 + . . .+ anx

n + . . .). Substitution into the ODE re-
sults in

∞∑
n= 0

(r + n)(r + n− 1)an x
r+n−1 +

∞∑
n= 0

(r + n)an x
r+n−1

−
∞∑
n= 0

(r + n)an x
r+n −

∞∑
n= 0

anx
r+n = 0 .

After multiplying both sides by x ,

∞∑
n= 0

(r + n)(r + n− 1)an x
r+n +

∞∑
n= 0

(r + n)an x
r+n

−
∞∑
n= 0

(r + n)an x
r+n+1 −

∞∑
n= 0

anx
r+n+1 = 0.

After adjusting the indices in the last two series, we obtain

a0 [r(r − 1) + r]xr

+

∞∑
n= 1

[(r + n)(r + n− 1)an + (r + n)an − (r + n)an−1]xr+n = 0 .
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Assuming a0 6= 0 , the indicial equation is r2 = 0 , with roots r1 = r2 = 0 . Setting
the remaining coefficients equal to zero, the recurrence relation is

an =
an−1

r + n
, n = 1, 2, . . . .

(c) With r = 0 ,

an =
an−1

n
, n = 1, 2, . . . .

Hence one solution is

y1(x) = 1 +
x

1!
+
x2

2!
+ . . .+

xn

n!
+ . . . = ex.

8.(a) Note that xp(x) = 3/2 and x2q(x) = x2 − 1/2, which are both analytic at
x = 0.

(b) Set y = xr(a0 + a1x+ a2x
2 + . . .+ anx

n + . . .). Substitution into the ODE
results in

2

∞∑
n= 0

(r + n)(r + n− 1)an x
r+n + 3

∞∑
n= 0

(r + n)an x
r+n

+ 2

∞∑
n= 0

anx
r+n+2 −

∞∑
n= 0

anx
r+n = 0 .

After adjusting the indices in the second-to-last series, we obtain

a0 [2r(r − 1) + 3r − 1]xr + a1 [2(r + 1)r + 3(r + 1)− 1]

+

∞∑
n= 2

[2(r + n)(r + n− 1)an + 3(r + n)an − an + 2 an−2]xr+n = 0.

Assuming a0 6= 0 , the indicial equation is 2r2 + r − 1 = 0 , with roots r1 = 1/2 and
r2 = −1 . Setting the remaining coefficients equal to zero, the recurrence relation
is

an =
−2an−2

(r + n+ 1) [2(r + n)− 1]
, n = 2, 3, . . . .

Setting the remaining coefficients equal to zero, we have a1 = 0 , which implies that
all of the odd coefficients are zero.

(c) With r = 1/2 ,

an =
−2an−2

n(2n+ 3)
, n = 2, 3, . . . .

So for k = 1, 2, . . . ,

a2k =
−a2k−2

k(4k + 3)
=

a2k−4

(k − 1)k(4k − 5)(4k + 3)
=

(−1)ka0

k! 7 · 11 . . . (4k + 3)
.

(d) With r = −1 ,

an =
−2an−2

n(2n− 3)
, n = 2, 3, . . . .
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So for k = 1, 2, . . . ,

a2k =
−a2k−2

k(4k − 3)
=

a2k−4

(k − 1)k(4k − 11)(4k − 3)
=

(−1)ka0

k! 5 · 9 . . . (4k − 3)
.

The two linearly independent solutions are

y1(x) = x1/2

[
1 +

∞∑
n= 1

(−1)n x2n

n! 7 · 11 . . . (4n+ 3)

]

y2(x) = x−1

[
1 +

∞∑
n= 1

(−1)n x2n

n! 5 · 9 . . . (4n− 3)

]
.

9.(a) Note that x p(x) = −x− 3 and x2q(x) = x+ 3, which are both analytic at
x = 0.

(b) Set y = xr(a0 + a1x+ a2x
2 + . . .+ anx

n + . . .). Substitution into the ODE re-
sults in
∞∑
n= 0

(r + n)(r + n− 1)an x
r+n −

∞∑
n= 0

(r + n)an x
r+n+1 − 3

∞∑
n= 0

(r + n)an x
r+n

+

∞∑
n= 0

anx
r+n+1 + 3

∞∑
n= 0

anx
r+n = 0 .

After adjusting the indices in the second-to-last series, we obtain

a0 [r(r − 1)− 3r + 3]xr

+

∞∑
n= 1

[(r + n)(r + n− 1)an − (r + n− 2)an−1 − 3(r + n− 1)an]xr+n = 0.

Assuming a0 6= 0 , the indicial equation is r2 − 4r + 3 = 0 , with roots r1 = 3 and
r2 = 1 . Setting the remaining coefficients equal to zero, the recurrence relation is

an =
(r + n− 2)an−1

(r + n− 1)(r + n− 3)
, n = 1, 2, . . . .

(c) With r = 3 ,

an =
(n+ 1)an−1

n(n+ 2)
, n = 1, 2, . . . .

It follows that for n ≥ 1 ,

an =
(n+ 1)an−1

n(n+ 2)
=

an−2

(n− 1)(n+ 2)
= . . . =

2 a0

n! (n+ 2)
.

Therefore one solution is

y1(x) = x3

[
1 +

∞∑
n= 1

2xn

n! (n+ 2)

]
.

10.(a) Here x p(x) = 0 and x2q(x) = x2 + 1/4 , which are both analytic at x = 0 .
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(b) Set y = xr(a0 + a1x+ a2x
2 + . . .+ anx

n + . . .). Substitution into the ODE re-
sults in

∞∑
n= 0

(r + n)(r + n− 1)an x
r+n +

∞∑
n= 0

anx
r+n+2 +

1

4

∞∑
n= 0

anx
r+n = 0 .

After adjusting the indices in the second series, we obtain

a0

[
r(r − 1) +

1

4

]
xr + a1

[
(r + 1)r +

1

4

]
xr+1

+

∞∑
n= 2

[
(r + n)(r + n− 1)an +

1

4
an + an−2

]
xr+n = 0 .

Assuming a0 6= 0 , the indicial equation is r2 − r + 1
4 = 0, with roots r1 = r2 = 1/2.

Setting the remaining coefficients equal to zero, we find that a1 = 0 . The recurrence
relation is

an =
−4an−2

(2r + 2n− 1)2
, n = 2, 3, . . . .

(c) With r = 1/2 ,

an =
−an−2

n2
, n = 2, 3, . . . .

Since a1 = 0 , the odd coefficients are zero. So for k ≥ 1 ,

a2k =
−a2k−2

4k2
=

a2k−4

42(k − 1)2k2
= . . . =

(−1)ka0

4k(k!)2
.

Therefore one solution is

y1(x) =
√
x

[
1 +

∞∑
n= 1

(−1)nx2n

22n(n!)2

]
.

12.(a) Dividing through by the leading coefficient, the ODE can be written as

y ′′ − x

1− x2
y ′ +

α2

1− x2
y = 0 .

For x = 1 ,

p0 = lim
x→1

(x− 1)p(x) = lim
x→1

x

x+ 1
=

1

2
.

q0 = lim
x→1

(x− 1)2q(x) = lim
x→1

α2(1− x)

x+ 1
= 0 .

For x = −1 ,

p0 = lim
x→−1

(x+ 1)p(x) = lim
x→−1

x

x− 1
=

1

2
.

q0 = lim
x→−1

(x+ 1)2q(x) = lim
x→−1

α2(x+ 1)

(1− x)
= 0 .

Hence x = −1 and x = 1 are regular singular points. As shown in Example 1, the
indicial equation is given by

r(r − 1) + p0r + q0 = 0 .
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In this case, both sets of roots are r1 = 1/2 and r2 = 0 .

(b) Let t = x− 1 , and u(t) = y(t+ 1). Under this change of variable, the differen-
tial equation becomes

(t2 + 2t)u ′′ + (t+ 1)u ′ − α2u = 0 .

Based on part (a), t = 0 is a regular singular point. Set u =
∑∞
n= 0 an t

r+n. Sub-
stitution into the ODE results in
∞∑
n= 0

(r + n)(r + n− 1)an t
r+n + 2

∞∑
n= 0

(r + n)(r + n− 1)an t
r+n−1

+

∞∑
n= 0

(r + n)an t
r+n +

∞∑
n= 0

(r + n)an t
r+n−1 − α2

∞∑
n= 0

ant
r+n = 0 .

Upon inspection, we can also write

∞∑
n= 0

(r + n)2an t
r+n + 2

∞∑
n= 0

(r + n)(r + n− 1

2
)an t

r+n−1 − α2
∞∑
n= 0

ant
r+n = 0.

After adjusting the indices in the second series, it follows that

a0

[
2r(r − 1

2
)

]
tr−1

+

∞∑
n= 0

[
(r + n)2an + 2(r + n+ 1)(r + n+

1

2
)an+1 − α2an

]
tr+n = 0.

Assuming that a0 6= 0 , the indicial equation is 2r2 − r = 0 , with roots r = 0 , 1/2 .
The recurrence relation is

(r + n)2an + 2(r + n+ 1)(r + n+
1

2
)an+1 − α2an = 0 , n = 0, 1, 2, . . . .

With r1 = 1/2 , we find that for n ≥ 1 ,

an =
4α2 − (2n− 1)2

4n(2n+ 1)
an−1 = (−1)n

[
1− 4α2

] [
9− 4α2

]
. . .
[
(2n− 1)2 − 4α2

]
2n(2n+ 1)!

a0 .

With r2 = 0 , we find that for n ≥ 1 ,

an =
α2 − (n− 1)2

n(2n− 1)
an−1 = (−1)n

α(−α)
[
1− α2

] [
4− α2

]
. . .
[
(n− 1)2 − α2

]
n! · 3 · 5 . . . (2n− 1)

a0 .

The two linearly independent solutions of the Chebyshev equation are

y1(x) = |x− 1|1/2
(

1 +

∞∑
n= 1

(−1)n
(1− 4α2)(9− 4α2) . . . ((2n− 1)2 − 4α2)

2n(2n+ 1)!
(x− 1)n

)

y2(x) = 1 +

∞∑
n= 1

(−1)n
α(−α)(1− α2)(4− α2) . . . ((n− 1)2 − α2)

n! · 3 · 5 . . . (2n− 1)
(x− 1)n .
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13.(a) Here xp(x) = 1− x and x2q(x) = λx, which are both analytic at x = 0. In
fact,

p0 = lim
x→0

x p(x) = 1 and q0 = lim
x→0

x2q(x) = 0 .

(b) The indicial equation is r(r − 1) + r = 0 , with roots r1,2 = 0 .

(c) Set
y = a0 + a1x+ a2x

2 + . . .+ anx
n + . . . .

Substitution into the ODE results in
∞∑
n= 2

n(n− 1)an x
n−1 +

∞∑
n= 1

nan x
n−1 −

∞∑
n= 0

nan x
n + λ

∞∑
n= 0

anx
n = 0 .

That is,

∞∑
n= 1

n(n+ 1)an+1 x
n +

∞∑
n= 0

(n+ 1)an+1 x
n −

∞∑
n= 1

nan x
n + λ

∞∑
n= 0

anx
n = 0 .

It follows that

a1 + λ a0 +

∞∑
n= 1

[
(n+ 1)2an+1 − (n− λ)an

]
xn = 0 .

Setting the coefficients equal to zero, we find that a1 = −λa0 , and

an =
(n− 1− λ)

n2
an−1 , n = 2, 3, . . . .

That is, for n ≥ 2 ,

an =
(n− 1− λ)

n2
an−1 = . . . =

(−λ)(1− λ) . . . (n− 1− λ)

(n!)2
a0 .

Therefore one solution of the Laguerre equation is

y1(x) = 1 +

∞∑
n= 1

(−λ)(1− λ) . . . (n− 1− λ)

(n!)2
xn.

Note that if λ = m , a positive integer, then an = 0 for n ≥ m+ 1 . In that case,
the solution is a polynomial

y1(x) = 1 +

m∑
n= 1

(−λ)(1− λ) . . . (n− 1− λ)

(n!)2
xn .
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5.6

2.(a) P (x) = 0 only for x = 0. Furthermore, xp(x) = −2− x and x2q(x) = 2 + x2.
It follows that

p0 = lim
x→0

(−2− x) = −2

q0 = lim
x→0

(2 + x2) = 2

and therefore x = 0 is a regular singular point.

(b) The indicial equation is given by r(r − 1)− 2r + 2 = 0, that is, r2 − 3r + 2 = 0 ,
with roots r1 = 2 and r2 = 1 .

4. The coefficients P (x) , Q(x) , and R(x) are analytic for all x ∈ R . Hence there
are no singular points.

5.(a) P (x) = 0 only for x = 0. Furthermore, xp(x) = 3 sinx/ x and x2q(x) = −2.
It follows that

p0 = lim
x→0

3
sin x

x
= 3

q0 = lim
x→0
−2 = −2

and therefore x = 0 is a regular singular point.

(b) The indicial equation is given by r(r − 1) + 3r − 2 = 0, that is, r2 + 2r − 2 = 0 ,
with roots r1 = −1 +

√
3 and r2 = −1−

√
3 .

6.(a) P (x) = 0 for x = 0 and x = −2. We note that p(x) = x−1(x+ 2)−1/2, and
q(x) = −(x+ 2)−1/2. For the singularity at x = 0,

p0 = lim
x→0

1

2(x+ 2)
=

1

4

q0 = lim
x→0

−x2

2(x+ 2)
= 0

and therefore x = 0 is a regular singular point.
For the singularity at x = −2,

p0 = lim
x→−2

(x+ 2)p(x) = lim
x→−2

1

2x
= −1

4

q0 = lim
x→−2

(x+ 2)2q(x) = lim
x→−2

−(x+ 2)

2
= 0

and therefore x = −2 is a regular singular point.

(b) For x = 0: the indicial equation is given by r(r − 1) + r/4 = 0, that is, r2 −
3r/4 = 0, with roots r1 = 3/4 and r2 = 0 .

For x = −2: the indicial equation is given by r(r − 1)− r/4 = 0, that is, r2 −
5r/4 = 0 , with roots r1 = 5/4 and r2 = 0 .
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7.(a) P (x) = 0 only for x = 0. Furthermore, xp(x) = 1/2 + sinx/ 2x and x2q(x) =
1. It follows that

p0 = lim
x→0

xp(x) = 1

q0 = lim
x→0

x2q(x) = 1

and therefore x = 0 is a regular singular point.

(b) The indicial equation is given by

r(r − 1) + r + 1 = 0 ,

that is, r2 + 1 = 0 , with complex conjugate roots r = ± i .

8.(a) Note that P (x) = 0 only for x = −1. We find that p(x) = 3(x− 1)/(x+ 1),
and q(x) = 3/(x+ 1)2. It follows that

p0 = lim
x→−1

(x+ 1)p(x) = lim
x→−1

3(x− 1) = −6

q0 = lim
x→−1

(x+ 1)2q(x) = lim
x→−1

3 = 3

and therefore x = −1 is a regular singular point.

(b) The indicial equation is given by

r(r − 1)− 6r + 3 = 0,

that is, r2 − 7r + 3 = 0 , with roots r1 = (7 +
√

37 )/2 and r2 = (7−
√

37 )/2 .

10.(a) P (x) = 0 for x = 2 and x = −2. We note that p(x) = 2x(x− 2)−2(x+ 2)−1,
and q(x) = 3(x− 2)−1(x+ 2)−1. For the singularity at x = 2,

lim
x→2

(x− 2)p(x) = lim
x→2

2x

x2 − 4
,

which is undefined. Therefore x = 2 is an irregular singular point. For the singu-
larity at x = −2,

p0 = lim
x→−2

(x+ 2)p(x) = lim
x→−2

2x

(x− 2)2
= −1

4

q0 = lim
x→−2

(x+ 2)2q(x) = lim
x→−2

3(x+ 2)

x− 2
= 0

and therefore x = −2 is a regular singular point.

(b) The indicial equation is given by r(r − 1)− r/4 = 0, that is, r2 − 5r/4 = 0 ,
with roots r1 = 5/4 and r2 = 0 .
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11.(a) P (x) = 0 for x = 2 and x = −2. We note that p(x) = 2x/(4− x2), and
q(x) = 3/(4− x2). For the singularity at x = 2,

p0 = lim
x→2

(x− 2)p(x) = lim
x→2

−2x

x+ 2
= −1

q0 = lim
x→2

(x− 2)2q(x) = lim
x→2

3(2− x)

x+ 2
= 0

and therefore x = 2 is a regular singular point.
For the singularity at x = −2 ,

p0 = lim
x→−2

(x+ 2)p(x) = lim
x→−2

2x

2− x
= −1

q0 = lim
x→−2

(x+ 2)2q(x) = lim
x→−2

3(x+ 2)

2− x
= 0

and therefore x = −2 is a regular singular point.

(b) For x = 2: the indicial equation is given by r(r − 1)− r = 0, that is, r2 − 2r =
0 , with roots r1 = 2 and r2 = 0 .

For x = −2: the indicial equation is given by r(r − 1)− r = 0, that is, r2 − 2r =
0 , with roots r1 = 2 and r2 = 0 .

12.(a) P (x) = 0 for x = 0 and x = −3. We note that p(x) = −2x−1(x+ 3)−1, and
q(x) = −1/(x+ 3)2. For the singularity at x = 0,

p0 = lim
x→0

x p(x) = lim
x→0

−2

x+ 3
= −2

3

q0 = lim
x→0

x2q(x) = lim
x→0

−x2

(x+ 3)2
= 0

and therefore x = 0 is a regular singular point.
For the singularity at x = −3,

p0 = lim
x→−3

(x+ 3)p(x) = lim
x→−3

−2

x
=

2

3

q0 = lim
x→−3

(x+ 3)2q(x) = lim
x→−3

(−1) = −1

and therefore x = −3 is a regular singular point.

(b) For x = 0: the indicial equation is given by r(r − 1)− 2r/3 = 0, that is, r2 −
5r/3 = 0 , with roots r1 = 5/3 and r2 = 0 .

For x = −3: the indicial equation is given by r(r − 1) + 2r/3− 1 = 0, that is,
r2 − r/3− 1 = 0 , with roots r1 = (1 +

√
37 )/6 and r2 = (1−

√
37 )/6 .

14.(a) Here x p(x) = 2x and x2q(x) = 6xex . Both of these functions are analytic
at x = 0 , therefore x = 0 is a regular singular point. Note that p0 = q0 = 0 .

(b) The indicial equation is given by r(r − 1) = 0, that is, r2 − r = 0 , with roots
r1 = 1 and r2 = 0 .
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(c) In order to find the solution corresponding to r1 = 1 , set y = x
∑∞
n= 0 anx

n.
Upon substitution into the ODE, we have

∞∑
n= 0

(n+ 2)(n+ 1)an+1 x
n+1 + 2

∞∑
n= 0

(n+ 1)anx
n+1 + 6 ex

∞∑
n= 0

anx
n+1 = 0 .

After adjusting the indices in the first two series, and expanding the exponential
function,

∞∑
n= 1

n(n+ 1)an x
n + 2

∞∑
n= 1

nan−1x
n + 6 a0x+ (6a0 + 6a1)x2

+(6a2 + 6a1 + 3a0)x3 + (6a3 + 6a2 + 3a1 + a0)x4 + . . . = 0 .

Equating the coefficients, we obtain the system of equations

2a1 + 2a0 + 6a0 = 0

6a2 + 4a1 + 6a0 + 6a1 = 0

12a3 + 6a2 + 6a2 + 6a1 + 3a0 = 0

20a4 + 8a3 + 6a3 + 6a2 + 3a1 + a0 = 0

...

Setting a0 = 1 , solution of the system results in a1 = −4, a2 = 17/3, a3 = −47/12,
a4 = 191/120 , . . . . Therefore one solution is

y1(x) = x− 4x2 +
17

3
x3 − 47

12
x4 + . . . .

The exponents differ by an integer. So for a second solution, set

y2(x) = a y1(x) ln x + 1 + c1x+ c2x
2 + . . .+ cnx

n + . . . .

Substituting into the ODE, we obtain

aL [y1(x)] · ln x+ 2a y ′1(x) + 2a y1(x)− ay1(x)

x
+ L

[
1 +

∞∑
n= 1

cn x
n

]
= 0 .

Since L [y1(x)] = 0 , it follows that

L

[
1 +

∞∑
n= 1

cn x
n

]
= −2a y ′1(x)− 2a y1(x) + a

y1(x)

x
.

More specifically,

∞∑
n= 1

n(n+ 1)cn+1x
n + 2

∞∑
n= 1

n cnx
n + 6 + (6 + 6c1)x

+(6c2 + 6c1 + 3)x2 + . . . = −a+ 10ax− 61

3
ax2 +

193

12
ax3 + . . . .
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Equating the coefficients, we obtain the system of equations

6 = −a
2c2 + 8c1 + 6 = 10a

6c3 + 10c2 + 6c1 + 3 = −61

3
a

12c4 + 12c3 + 6c2 + 3c1 + 1 =
193

12
a

...

Solving these equations for the coefficients, a = −6 . In order to solve the remaining
equations, set c1 = 0 . Then c2 = −33, c3 = 449/6 , c4 = −1595/24 , . . . . Therefore
a second solution is

y2(x) = −6 y1(x) ln x+

[
1− 33x2 +

449

6
x3 − 1595

24
x4 + . . .

]
.

15.(a) Note the p(x) = 6x/(x− 1) and q(x) = 3x−1(x− 1)−1 . Furthermore, x p(x) =
6x2/(x− 1) and x2q(x) = 3x/(x− 1) . It follows that

p0 = lim
x→0

6x2

x− 1
= 0

q0 = lim
x→0

3x

x− 1
= 0

and therefore x = 0 is a regular singular point.

(b) The indicial equation is given by r(r − 1) = 0, that is, r2 − r = 0 , with roots
r1 = 1 and r2 = 0 .

(c) In order to find the solution corresponding to r1 = 1 , set y = x
∑∞
n= 0 anx

n.
Upon substitution into the ODE, we have

∞∑
n= 1

n(n+ 1)an x
n+1 −

∞∑
n= 1

n(n+ 1)an x
n + 6

∞∑
n= 0

(n+ 1)anx
n+2 + 3

∞∑
n= 0

anx
n+1 = 0 .

After adjusting the indices, it follows that

∞∑
n= 2

n(n− 1)an−1 x
n −

∞∑
n= 1

n(n+ 1)an x
n + 6

∞∑
n= 2

(n− 1)an−2x
n + 3

∞∑
n= 1

an−1x
n = 0 .

That is,

−2a1 + 3a0 +

∞∑
n= 2

[
−n(n+ 1)an + (n2 − n+ 3)an−1 + 6(n− 1)an−2

]
xn = 0.

Setting the coefficients equal to zero, we have a1 = 3a0/2 , and for n ≥ 2 ,

n(n+ 1)an = (n2 − n+ 3)an−1 + 6(n− 1)an−2 .
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If we assign a0 = 1 , then we obtain a1 = 3/2 , a2 = 9/4 , a3 = 51/16 , . . . . Hence
one solution is

y1(x) = x+
3

2
x2 +

9

4
x3 +

51

16
x4 +

111

40
x5 + . . . .

The exponents differ by an integer. So for a second solution, set

y2(x) = a y1(x) ln x + 1 + c1x+ c2x
2 + . . .+ cnx

n + . . . .

Substituting into the ODE, we obtain

2ax y ′1(x)− 2a y ′1(x) + 6ax y1(x)− a y1(x) + a
y1(x)

x
+ L

[
1 +

∞∑
n= 1

cn x
n

]
= 0,

since L [y1(x)] = 0 . It follows that

L

[
1 +

∞∑
n= 1

cn x
n

]
= 2a y ′1(x)− 2ax y ′1(x) + a y1(x)− 6ax y1(x)− ay1(x)

x
.

Now

L

[
1 +

∞∑
n= 1

cn x
n

]
= 3 + (−2c2 + 3c1)x+ (−6c3 + 5c2 + 6c1)x2+

+ (−12c4 + 9c3 + 12c2)x3 + (−20c5 + 15c4 + 18c3)x4 + . . . .

Substituting for y1(x) , the right hand side of the ODE is

a+
7

2
ax+

3

4
ax2 +

33

16
ax3 − 867

80
ax4 − 441

10
ax5 + . . . .

Equating the coefficients, we obtain the system of equations

3 = a

−2c2 + 3c1 =
7

2
a

−6c3 + 5c2 + 6c1 =
3

4
a

−12c4 + 9c3 + 12c2 =
33

16
a

...

We find that a = 3. In order to solve the second equation, set c1 = 0. Solution
of the remaining equations results in c2 = −21/4 , c3 = −19/4 , c4 = −597/64 , . . ..
Hence a second solution is

y2(x) = 3 y1(x) ln x+

[
1− 21

4
x2 − 19

4
x3 − 597

64
x4 + . . .

]
.

16.(a) After multiplying both sides of the ODE by x , we find that x p(x) = 0 and
x2q(x) = x . Both of these functions are analytic at x = 0 , hence x = 0 is a regular
singular point.

(b) Furthermore, p0 = q0 = 0 . So the indicial equation is r(r − 1) = 0 , with roots
r1 = 1 and r2 = 0 .
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(c) In order to find the solution corresponding to r1 = 1 , set y = x
∑∞
n= 0 anx

n.
Upon substitution into the ODE, we have

∞∑
n= 1

n(n+ 1)an x
n +

∞∑
n= 0

anx
n+1 = 0 .

That is,
∞∑
n= 1

[n(n+ 1)an + an−1] xn = 0 .

Setting the coefficients equal to zero, we find that for n ≥ 1 ,

an =
−an−1

n(n+ 1)
.

It follows that

an =
−an−1

n(n+ 1)
=

an−2

(n− 1)n2(n+ 1)
= . . . =

(−1)na0

(n!)2(n+ 1)
.

Hence one solution is

y1(x) = x− 1

2
x2 +

1

12
x3 − 1

144
x4 +

1

2880
x5 + . . . .

The exponents differ by an integer. So for a second solution, set

y2(x) = a y1(x) ln x + 1 + c1x+ c2x
2 + . . .+ cnx

n + . . . .

Substituting into the ODE, we obtain

aL [y1(x)] · ln x+ 2a y ′1(x)− ay1(x)

x
+ L

[
1 +

∞∑
n= 1

cn x
n

]
= 0 .

Since L [y1(x)] = 0 , it follows that

L

[
1 +

∞∑
n= 1

cn x
n

]
= −2a y ′1(x) + a

y1(x)

x
.

Now

L

[
1 +

∞∑
n= 1

cn x
n

]
= 1 + (2c2 + c1)x+ (6c3 + c2)x2 + (12c4 + c3)x3

+(20c5 + c4)x4 + (30c6 + c5)x5 + . . . .

Substituting for y1(x) , the right hand side of the ODE is

−a+
3

2
ax− 5

12
ax2 +

7

144
ax3 − 1

320
ax4 + . . . .
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Equating the coefficients, we obtain the system of equations

1 = −a

2c2 + c1 =
3

2
a

6c3 + c2 = − 5

12
a

12c4 + c3 =
7

144
a

...

Evidently, a = −1 . In order to solve the second equation, set c1 = 0 . We then find
that c2 = −3/4 , c3 = 7/36 , c4 = −35/1728 , . . . . Therefore a second solution is

y2(x) = −y1(x) ln x+

[
1− 3

4
x2 +

7

36
x3 − 35

1728
x4 + . . .

]
.

19.(a) After dividing by the leading coefficient, we find that

p0 = lim
x→0

x p(x) = lim
x→0

γ − (1 + α+ β)x

1− x
= γ .

q0 = lim
x→0

x2q(x) = lim
x→0

−αβ x
1− x

= 0 .

Hence x = 0 is a regular singular point. The indicial equation is r(r − 1) + γ r = 0 ,
with roots r1 = 1− γ and r2 = 0 .

(b) For x = 1,

p0 = lim
x→1

(x− 1)p(x) = lim
x→1

−γ + (1 + α+ β)x

x
= 1− γ + α+ β .

q0 = lim
x→1

(x− 1)2q(x) = lim
x→1

αβ(x− 1)

x
= 0 .

Hence x = 1 is a regular singular point. The indicial equation is

r2 − (γ − α− β) r = 0 ,

with roots r1 = γ − α− β and r2 = 0 .

(c) Given that r1 − r2 is not a positive integer, we can set y =
∑∞
n= 0 anx

n. Sub-
stitution into the ODE results in

x(1− x)

∞∑
n= 2

n(n− 1)anx
n−2 + [γ − (1 + α+ β)x]

∞∑
n= 1

nanx
n−1 − αβ

∞∑
n= 0

anx
n = 0.

That is,

∞∑
n= 1

n(n+ 1)an+1x
n −

∞∑
n= 2

n(n− 1)anx
n + γ

∞∑
n= 0

(n+ 1)an+1x
n
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−(1 + α+ β)

∞∑
n= 1

nanx
n − αβ

∞∑
n= 0

anx
n = 0.

Combining the series, we obtain

γ a1 − αβ a0 + [(2 + 2γ)a2 − (1 + α+ β + αβ)a1]x+

∞∑
n= 2

An x
n = 0 ,

in which

An = (n+ 1)(n+ γ)an+1 − [n(n− 1) + (1 + α+ β)n+ αβ] an .

Note that n(n− 1) + (1 + α+ β)n+ αβ = (n+ α)(n+ β) . Setting the coefficients
equal to zero, we have γ a1 − αβ a0 = 0 , and

an+1 =
(n+ α)(n+ β)

(n+ 1)(n+ γ)
an

for n ≥ 1 . Hence one solution is

y1(x) = 1 +
αβ

γ · 1!
x+

α(α+ 1)β(β + 1)

γ(γ + 1) · 2!
x2 +

α(α+ 1)(α+ 2)β(β + 1)(β + 2)

γ(γ + 1)(γ + 2) · 3!
x3 + . . . .

Since the nearest other singularity is at x = 1 , the radius of convergence of y1(x)
will be at least ρ = 1 .

(d) Given that r1 − r2 is not a positive integer, we can set y = x1−γ ∑∞
n= 0 bnx

n.
Then substitution into the ODE results in

x(1− x)

∞∑
n= 0

(n+ 1− γ)(n− γ)anx
n−γ−1

+ [γ − (1 + α+ β)x]

∞∑
n= 0

(n+ 1− γ)anx
n−γ − αβ

∞∑
n= 0

anx
n+1−γ = 0.

That is,

∞∑
n= 0

(n+ 1− γ)(n− γ)anx
n−γ −

∞∑
n= 0

(n+ 1− γ)(n− γ)anx
n+1−γ

+γ

∞∑
n= 0

(n+ 1− γ)anx
n−γ − (1 + α+ β)

∞∑
n= 0

(n+ 1− γ)anx
n+1−γ

− αβ
∞∑
n= 0

anx
n+1−γ = 0.

After adjusting the indices,

∞∑
n= 0

(n+ 1− γ)(n− γ)anx
n−γ −

∞∑
n= 1

(n− γ)(n− 1− γ)an−1x
n−γ

+γ

∞∑
n= 0

(n+ 1− γ)anx
n−γ − (1 + α+ β)

∞∑
n= 1

(n− γ)an−1x
n−γ − αβ

∞∑
n= 1

an−1x
n−γ = 0.



182 Chapter 5. Series Solutions of Second Order Linear Equations

Combining the series, we obtain

∞∑
n= 1

Bn x
n−γ = 0 ,

in which

Bn = n(n+ 1− γ)bn − [(n− γ)(n− γ + α+ β) + αβ] bn−1.

Note that (n− γ)(n− γ + α+ β) + αβ = (n+ α− γ)(n+ β − γ). Setting Bn = 0,
it follows that for n ≥ 1 ,

bn =
(n+ α− γ)(n+ β − γ)

n(n+ 1− γ)
bn−1.

Therefore a second solution is

y2(x) = x1−γ
[
1 +

(1 + α− γ)(1 + β − γ)

(2− γ)1!
x

+
(1 + α− γ)(2 + α− γ)(1 + β − γ)(2 + β − γ)

(2− γ)(3− γ)2 !
x2 + . . .

]
.

(e) Under the transformation x = 1/ξ , the ODE becomes

ξ4 1

ξ
(1− 1

ξ
)
d2y

dξ2
+

{
2ξ3 1

ξ
(1− 1

ξ
)− ξ2

[
γ − (1 + α+ β)

1

ξ

]}
dy

dξ
− αβ y = 0 .

That is,

(ξ3 − ξ2)
d2y

dξ2
+
[
2ξ2 − γ ξ2 + (−1 + α+ β)ξ

] dy
dξ
− αβ y = 0 .

Therefore ξ = 0 is a singular point. Note that

p(ξ) =
(2− γ) ξ + (−1 + α+ β)

ξ2 − ξ
and q(ξ) =

−αβ
ξ3 − ξ2

.

It follows that

p0 = lim
ξ→0

ξ p(ξ) = lim
ξ→0

(2− γ) ξ + (−1 + α+ β)

ξ − 1
= 1− α− β ,

q0 = lim
ξ→0

ξ2q(ξ) = lim
ξ→0

−αβ
ξ − 1

= αβ .

Hence ξ = 0 (x =∞) is a regular singular point. The indicial equation is

r(r − 1) + (1− α− β)r + αβ = 0 ,

or r2 − (α+ β)r + αβ = 0 . Evidently, the roots are r = α and r = β .
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5.7

3. Here x p(x) = 1 and x2q(x) = 2x , which are both analytic everywhere. We set
y = xr(a0 + a1x+ a2x

2 + . . .+ anx
n + . . .). Substitution into the ODE results in

∞∑
n= 0

(r + n)(r + n− 1)an x
r+n +

∞∑
n= 0

(r + n)an x
r+n + 2

∞∑
n= 0

anx
r+n+1 = 0 .

After adjusting the indices in the last series, we obtain

a0 [r(r − 1) + r]xr +

∞∑
n= 1

[(r + n)(r + n− 1)an + (r + n)an + 2 an−1]xr+n = 0.

Assuming a0 6= 0 , the indicial equation is r2 = 0 , with double root r = 0 . Setting
the remaining coefficients equal to zero, we have for n ≥ 1 ,

an(r) = − 2

(n+ r)2
an−1(r) .

It follows that

an(r) =
(−1)n 2n

[(n+ r)(n+ r − 1) . . . (1 + r)]
2 a0 , n ≥ 1 .

Since r = 0 , one solution is given by

y1(x) =

∞∑
n= 0

(−1)n 2n

(n!)2
xn .

For a second linearly independent solution, we follow the discussion in Section 5.6.
First note that

a ′n(r)

an(r)
= −2

[
1

n+ r
+

1

n+ r − 1
+ . . .+

1

1 + r

]
.

Setting r = 0 ,

a ′n(0) = −2Hn an(0) = −2Hn
(−1)n 2n

(n!)2
.

Therefore,

y2(x) = y1(x) ln x− 2

∞∑
n= 0

(−1)n 2nHn

(n!)2
xn .

4. Here x p(x) = 4 and x2q(x) = 2 + x , which are both analytic everywhere. We
set y = xr(a0 + a1x+ a2x

2 + . . .+ anx
n + . . .). Substitution into the ODE results

in
∞∑
n= 0

(r + n)(r + n− 1)an x
r+n + 4

∞∑
n= 0

(r + n)an x
r+n

+

∞∑
n= 0

anx
r+n+1 + 2

∞∑
n= 0

anx
r+n = 0 .
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After adjusting the indices in the second-to-last series, we obtain

a0 [r(r − 1) + 4r + 2]xr

+

∞∑
n= 1

[(r + n)(r + n− 1)an + 4(r + n)an + 2 an + an−1]xr+n = 0.

Assuming a0 6= 0 , the indicial equation is r2 + 3r + 2 = 0 , with roots r1 = −1 and
r2 = −2 . Setting the remaining coefficients equal to zero, we have for n ≥ 1 ,

an(r) = − 1

(n+ r + 1)(n+ r + 2)
an−1(r) .

It follows that

an(r) =
(−1)n

[(n+ r + 1)(n+ r) . . . (2 + r)] [(n+ r + 2)(n+ r) . . . (3 + r)]
a0 , n ≥ 1 .

Since r1 = −1 , one solution is given by

y1(x) = x−1
∞∑
n= 0

(−1)n

(n)!(n+ 1)!
xn .

For a second linearly independent solution, we follow the discussion in Section 5.6.
Since r1 − r2 = N = 1 , we find that

a1(r) = − 1

(r + 2)(r + 3)
,

with a0 = 1 . Hence the leading coefficient in the solution is

a = lim
r→−2

(r + 2) a1(r) = −1 .

Further,

(r + 2) an(r) =
(−1)n

(n+ r + 2) [(n+ r + 1)(n+ r) . . . (3 + r)]
2 .

Let An(r) = (r + 2) an(r) . It follows that

A ′n(r)

An(r)
= − 1

n+ r + 2
− 2

[
1

n+ r + 1
+

1

n+ r
+ . . .+

1

3 + r

]
.

Setting r = r2 = −2,

A ′n(−2)

An(−2)
= − 1

n
− 2

[
1

n− 1
+

1

n− 2
+ . . .+ 1

]
= −Hn −Hn−1 .

Hence

cn(−2) = −(Hn +Hn−1)An(−2) = −(Hn +Hn−1)
(−1)n

n!(n− 1)!
.

Therefore,

y2(x) = −y1(x) ln x+ x−2

[
1−

∞∑
n= 1

(−1)n(Hn +Hn−1)

n!(n− 1)!
xn

]
.
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6. Let y(x) = v(x)/
√
x . Then y ′ = x−1/2 v ′ − x−3/2 v/2 and y ′′ = x−1/2 v ′′ −

x−3/2 v ′ + 3x−5/2 v/4 . Substitution into the ODE results in[
x3/2 v ′′ − x1/2 v ′ + 3x−1/2 v/4

]
+
[
x1/2 v ′ − x−1/2 v/2

]
+ (x2 − 1

4
)x−1/2 v = 0 .

Simplifying, we find that
v ′′ + v = 0 ,

with general solution v(x) = c1 cos x+ c2 sin x . Hence

y(x) = c1x
−1/2 cos x+ c2 x

−1/2 sin x .

8. The absolute value of the ratio of consecutive terms is∣∣∣∣a2m+2 x
2m+2

a2m x2m

∣∣∣∣ =
|x|2m+2

22m(m+ 1)!m!

|x|2m 22m+2(m+ 2)!(m+ 1)!
=

|x|2

4(m+ 2)(m+ 1)
.

Applying the ratio test,

lim
m→∞

∣∣∣∣a2m+2 x
2m+2

a2m x2m

∣∣∣∣ = lim
m→∞

|x|2

4(m+ 2)(m+ 1)
= 0 .

Hence the series for J1(x) converges absolutely for all values of x . Furthermore,
since the series for J0(x) also converges absolutely for all x, term-by-term differen-
tiation results in

J ′0(x) =

∞∑
m= 1

(−1)mx2m−1

22m−1m!(m− 1)!
=

∞∑
m= 0

(−1)m+1 x2m+1

22m+1(m+ 1)!m!
=

= −x
2

∞∑
m= 0

(−1)m x2m

22m(m+ 1)!m!
.

Therefore, J ′0(x) = −J1(x) .

9.(a) Note that x p(x) = 1 and x2q(x) = x2 − ν2, which are both analytic at x = 0 .
Thus x = 0 is a regular singular point. Furthermore, p0 = 1 and q0 = −ν2. Hence
the indicial equation is r2 − ν2 = 0 , with roots r1 = ν and r2 = −ν .

(b) Set y = xr(a0 + a1x+ a2x
2 + . . .+ anx

n + . . .). Substitution into the ODE
results in
∞∑
n= 0

(r + n)(r + n− 1)an x
r+n +

∞∑
n= 0

(r + n)an x
r+n

+

∞∑
n= 0

anx
r+n+2 − ν2

∞∑
n= 0

anx
r+n = 0 .

After adjusting the indices in the second-to-last series, we obtain

a0

[
r(r − 1) + r − ν2

]
xr + a1

[
(r + 1)r + (r + 1)− ν2

]
+

∞∑
n= 2

[
(r + n)(r + n− 1)an + (r + n)an − ν2an + an−2

]
xr+n = 0.
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Setting the coefficients equal to zero, we find that a1 = 0 , and

an =
−1

(r + n)2 − ν2
an−2 ,

for n ≥ 2 . It follows that a3 = a5 = . . . = a2m+1 = . . . = 0 . Furthermore, with
r = ν ,

an =
−1

n(n+ 2ν)
an−2 .

So for m = 1, 2, . . . ,

a2m =
−1

2m(2m+ 2ν)
a2m−2 =

(−1)m

22mm!(1 + ν)(2 + ν) . . . (m− 1 + ν)(m+ ν)
a0 .

Hence one solution is

y1(x) = xν

[
1 +

∞∑
m= 1

(−1)m

m!(1 + ν)(2 + ν) . . . (m− 1 + ν)(m+ ν)
(
x

2
)2m

]
.

(c) Assuming that r1 − r2 = 2ν is not an integer, simply setting r = −ν in the
above results in a second linearly independent solution

y2(x) = x−ν

[
1 +

∞∑
m= 1

(−1)m

m!(1− ν)(2− ν) . . . (m− 1− ν)(m− ν)
(
x

2
)2m

]
.

(d) The absolute value of the ratio of consecutive terms in y1(x) is∣∣∣∣a2m+2 x
2m+2

a2m x2m

∣∣∣∣ =
|x|2m+2

22mm!(1 + ν) . . . (m+ ν)

|x|2m 22m+2(m+ 1)!(1 + ν) . . . (m+ 1 + ν)

=
|x|2

4(m+ 1)(m+ 1 + ν)
.

Applying the ratio test,

lim
m→∞

∣∣∣∣a2m+2 x
2m+2

a2m x2m

∣∣∣∣ = lim
m→∞

|x|2

4(m+ 1)(m+ 1 + ν)
= 0 .

Hence the series for y1(x) converges absolutely for all values of x . The same can
be shown for y2(x) . Note also, that if ν is a positive integer, then the coefficients
in the series for y2(x) are undefined.

10.(a) It suffices to calculate L [J0(x) ln x]. Indeed,

[J0(x) ln x]
′

= J ′0(x) ln x+
J0(x)

x

and

[J0(x) ln x]
′′

= J ′′0 (x) ln x+ 2
J ′0(x)

x
− J0(x)

x2
.

Hence

L [J0(x) ln x] = x2J ′′0 (x) ln x+ 2xJ ′0(x)− J0(x)

+ xJ ′0(x) ln x+ J0(x) + x2J0(x) ln x .
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Since x2J ′′0 (x) + xJ ′0(x) + x2J0(x) = 0 ,

L [J0(x) ln x] = 2xJ ′0(x) .

(b) Given that L [y2(x)] = 0 , after adjusting the indices in part (a), we have

b1x+ 22b2 x
2 +

∞∑
n= 3

(n2bn + bn−2)xn = −2xJ ′0(x) .

Using the series representation of J ′0(x) in Problem 8 ,

b1x+ 22b2 x
2 +

∞∑
n= 3

(n2bn + bn−2)xn = −2
∞∑
n= 1

(−1)n(2n)x2n

22n(n!)2
.

(c) Equating the coefficients on both sides of the equation, we find that

b1 = b3 = . . . = b2m+1 = . . . = 0 .

Also, with n = 1, 22b2 = 1/(1!)2, that is, b2 = 1/
[
22(1!)2

]
. Furthermore, for m ≥ 2,

(2m)2b2m + b2m−2 = −2
(−1)m(2m)

22m(m!)2
.

More explicitly,

b4 = − 1

22 42
(1 +

1

2
)

b6 =
1

22 42 62
(1 +

1

2
+

1

3
)

...

It can be shown, in general, that

b2m = (−1)m+1 Hm

22m(m!)2
.

11. Bessel’s equation of order one is

x2 y ′′ + x y ′ + (x2 − 1)y = 0 .

Based on Problem 9, the roots of the indicial equation are r1 = 1 and r2 = −1 .
Set y = xr(a0 + a1x+ a2x

2 + . . .+ anx
n + . . .). Substitution into the ODE results

in
∞∑
n= 0

(r + n)(r + n− 1)an x
r+n +

∞∑
n= 0

(r + n)an x
r+n

+

∞∑
n= 0

anx
r+n+2 −

∞∑
n= 0

anx
r+n = 0 .

After adjusting the indices in the second-to-last series, we obtain

a0 [r(r − 1) + r − 1]xr + a1 [(r + 1)r + (r + 1)− 1]
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+

∞∑
n= 2

[(r + n)(r + n− 1)an + (r + n)an − an + an−2]xr+n = 0.

Setting the coefficients equal to zero, we find that a1 = 0 , and

an(r) =
−1

(r + n)2 − 1
an−2(r) =

−1

(n+ r + 1)(n+ r − 1)
an−2(r),

for n ≥ 2 . It follows that a3 = a5 = . . . = a2m+1 = . . . = 0. Solving the recurrence
relation,

a2m(r) =
(−1)m

(2m+ r + 1)(2m+ r − 1)2 . . . (r + 3)2(r + 1)
a0.

With r = r1 = 1,

a2m(1) =
(−1)m

22m(m+ 1)!m!
a0.

For a second linearly independent solution, we follow the discussion in Section 5.6.
Since r1 − r2 = N = 2 , we find that

a2(r) = − 1

(r + 3)(r + 1)
,

with a0 = 1 . Hence the leading coefficient in the solution is

a = lim
r→−1

(r + 1) a2(r) = −1

2
.

Further,

(r + 1) a2m(r) =
(−1)m

(2m+ r + 1) [(2m+ r − 1) . . . (3 + r)]
2 .

Let An(r) = (r + 1) an(r) . It follows that

A ′2m(r)

A2m(r)
= − 1

2m+ r + 1
− 2

[
1

2m+ r − 1
+ . . .+

1

3 + r

]
.

Setting r = r2 = −1 , we calculate

c2m(−1) = −1

2
(Hm +Hm−1)A2m(−1)

= −1

2
(Hm +Hm−1)

(−1)m

2m [(2m− 2) . . . 2]
2 = −1

2
(Hm +Hm−1)

(−1)m

22m−1m!(m− 1)!
.

Note that a2m+1(r) = 0 implies that A2m+1(r) = 0 , so

c2m+1(−1) =

[
d

dr
A2m+1(r)

]
r=r2

= 0 .

Therefore,

y2(x) = −1

2

[
x

∞∑
m= 0

(−1)m

(m+ 1)!m!
(
x

2
)2m

]
ln x
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+
1

x

[
1−

∞∑
m= 1

(−1)m(Hm +Hm−1)

m!(m− 1)!
(
x

2
)2m

]
.

Based on the definition of J1(x),

y2(x) = −J1(x) ln x+
1

x

[
1−

∞∑
m= 1

(−1)m(Hm +Hm−1)

m!(m− 1)!
(
x

2
)2m

]
.
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