CHAPTER

7

Systems of First Order Linear

Equations

1. Introduce the variables 1 = u and x5 = u’. It follows that x{ = xo and
zy=u"=—-2u—0.5u".

In terms of the new variables, we obtain the system of two first order ODEs

)

:x2

i
1
x2’ =—2x1 —0.525.

3. First divide both sides of the equation by t2, and write
1 1

" li
=——u' —(1— —)u.
u LU ( 4t2)u
Set 1 =u and zo = u’. It follows that x{ = zo and
1 1
I " /
—u’ =—~u' —(1-—)u.
Ty =1u S U ( yre Ju
We obtain the system of equations
] =1
1 1
[
Ty = —(1 — E)‘Tl — ;xQ.
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5. Let 1 = u and zo = u'; then u” = 2. In terms of the new variables, we have
xh +0.2525 + 421 =2 cos 3t

with the initial conditions z1(0) =1 and x2(0) = —2. The equivalent first order
system is

) =19

xh = —4x1 —0.2525 + 2 cos 3t

with the above initial conditions.

7.(a) Solving the first equation for xs, we have xs = x{ + 2x; . Substitution into
the second equation results in (z{ + 2x1)" = x1 — 2(x{ + 2x1). That is, x{ +4z{ +
3x1 = 0. The resulting equation is a second order differential equation with con-
stant coefficients. The general solution is z1(t) = cre”t + coe ™3t With zo given

in terms of 7, it follows that x5(t) = cie™" — coe 3.

(b) Imposing the specified initial conditions, we obtain
Cl+62:2, 01—02:3,

with solution ¢; =5/2 and ¢g = —1/2. Hence

5 5 1
z1(t) = ie*t — 567375 and zo(t) = 5671‘/ + 567375.
()

10.(a) Solving the first equation for x2, we obtain x5 = (z1 — x{)/2. Substitution
into the second equation results in (x; — 21)'/2 = 321 — 2(x1 — z{). Rearranging
the terms, the single differential equation for z; is #{' +3x{ + 2z, = 0.

(b) The general solution is z1(t) = cie™* + cpe™2!. With x5 given in terms of z,
it follows that x5(t) = cie ™ + 3cae ™2t /2. Invoking the specified initial conditions,
¢y = —7 and ¢ = 6. Hence

r(t) = —Te ' +6e 2 and xo(t) = —Te ' +9e 2.
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E =4

11.(a) Solving the first equation for xs, we have xo = z{/2. Substitution into the
second equation results in z{'/2 = —2 4. The resulting equation is x{ +4xz1 = 0.

(b) The general solution is z1(t) = ¢1 cos 2t + cosin 2¢. With xo given in terms
of z1, it follows that x5(t) = —cy sin 2t + ¢o cos 2¢t. Imposing the specified initial
conditions, we obtain ¢; =3 and ¢y = 4. Hence

21(t) = 3 cos 2t + 4sin 2¢ and zo(t) = —3sin 2t + 4 cos 2t .

()

13. Solving the first equation for V', we obtain V = L -I’. Substitution into the
second equation results in

prr=-L_Lp

Rearranging the terms, the single differential equation for [ is

LRC-1"+L-I'"+R-1=0.

15. Let = c121(t) + cawa(t) and y = c1y1 () + caya(t). Then
' = 12 (t) + comh(t)

Y = 1y (t) + cays(t).



256

Chapter 7. Systems of First Order Linear Equations

Since x1(t), y1(t) and z2(t), ya2(t) are solutions for the original system,
2’ = er(prian () + pi2yi (1)) + c2(pr1z2(t) + praye(t))
Y = c1(paz1(t) + paayi(t)) + ca(parz2(t) 4 paoya(t)).
Rearranging terms gives
x' = pri(axi(t) + caa(t)) + prz(ciyi (t) + caya(t))
Y = par(c1z1(t) + coma(t)) + paalcryn (t) + caya(t)),

and so z and y solve the original system.

16. Based on the hypothesis,
21 (t) = pr(t)a1(t) +pr2(Oy1(t) + g1(t)
z5(t) = pu1(t)w2(t) + pr2(t)y2(t) + g1(t) .
Subtracting the two equations,
w1 (t) — 23(t) = p11(t) [21(t) — 23 ()] + pr2(t) [yi (t) — y3(8)] -
Similarly,
Y1(t) = ya(t) = p21(t) [21(t) — 23(8)] + p22(t) [y1 (t) — 3 ()] -

Hence the difference of the two solutions satisfies the homogeneous ODE.

17. For rectilinear motion in one dimension, Newton’s second law can be stated as

ZF:mx”.

The resisting force exerted by a linear spring is given by Fs = kd, in which ¢ is
the displacement of the end of a spring from its equilibrium configuration. Hence,
with 0 < x1 < xo, the first two springs are in tension, and the last spring is in
compression. The sum of the spring forces on my is

F‘1 = —kil.l‘l - kQ(IQ — 331) .

S

The total force on m; is
ZFl = —kix1 + kQ(!L‘Q — .’)31) + Fl(t) .
Similarly, the total force on my is

ZFz = —kz(.’EQ — xl) — k31’2 + Fz(t) .

18. One of the ways to transform the system is to assign the variables
Y1 = 21, Y2 = X2, 2/3:»”5/1, y4:x2'.

Before proceeding, note that

1
el = o [—(k1 + ko)1 4 kowa + Fi(t)]

1
Ty = P (koxy — (k2 + k3)xo + Fa(1)]
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Differentiating the new variables, we obtain the system of four first order equations

Yl =ys
Ys = Ya
1
yé = mi(—(/{il —+ kz)yl + k2y2 + Fl(t))
1
1
yi = mf(k‘gilh - (k'2 + k3)y2 + FQ(t)) :

2
19.(a) Taking a clockwise loop around each of the paths, it is easy to see that
voltage drops are given by Vi — Vo =0, and Vo — V3 =0.

(b) Consider the right node. The current in is given by I; + Iy . The current leaving
the node is —I5. Hence the current passing through the node is (I1 + Iz) — (—1I3).
Based on Kirchhoff’s first law, Iy + Io + I3 = 0.

(¢) In the capacitor,

cvy =1.
In the resistor,

Vo=RI5.
In the inductor,

LI=1Vj.

(d) Based on part (a), V3 = Vo = V;. Based on part (b),
, 1
— Is=0.
cvy + RVz—i— 3

It follows that 1
CVllz—Evl—Ig, and LIP,/:Vi

21. Let I, I, I3,and I be the current through the resistors, inductor, and capac-
itor, respectively. Assign Vi, Vs, V3,and V; as the respective voltage drops. Based
on Kirchhoff’s second law, the net voltage drops, around each loop, satisfy

Vi+Va+Vy=0, Vi+Va+Ve=0 and Vy;—-Vo=0.

Applying Kirchhoff’s first law to the upper-right node,
Is— (Ib+1,)=0.
Likewise, in the remaining nodes,
I, —I3=0 and ILb+I,—1;=0.

That is,

Vi—Vo=0, Vi+V3+V,=0 and I+ 14,—I3=0.
Using the current-voltage relations,

Vi=Rili, Vo=Roly, LIg=Vs;, CV/=I4
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Combining these equations,

RiI3+LIJ+Vy=0 and C’V4’:I37‘R%.
Now set I3 =1 and V4 =V, to obtain the system of equations
LI'=-RI-V and CV':I—]%.
23.(a)

2 gal/min

o i —
1 galmin

2 galfmin Tank 1 Tank 2 2 galfmin

Let Q1(t) and Q2(t) be the amount of salt in the respective tanks at time ¢. Note
that the volume of each tank remains constant. Based on conservation of mass, the
rate of increase of salt, in any given tank, is given by

rate of increase = rate in — rate out.

The rate of salt flowing into Tank 1 is
1 1
-] b2 (] 5

gal min 100 @ min 100 min
The rate at which salt flows out of Tank 1 is
@ 0} [4ga1] _ @z

Fout = {60 gal| [ min| 15 min’

Hence

QL Q@
dt T 700 15

Similarly, for Tank 2,

a7 30 100

The process is modeled by the system of equations

Qs _ Qi 30

@ Q2
@1=—75 T 150 T30
Q1 3Q2

/ —_— e | —
@ =35 ~ 790 T @

The initial conditions are Q1(0) = Q? and Q2(0) = QY.
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(b) The equilibrium values are obtained by solving the system

Q1 Q2

2 R 2 A P
15 100 700
Q1 3Q2 B
30 100 "2V

Its solution leads to Q¥ =54¢; +6¢2 and QF =60¢; +40¢> .

(c¢) The question refers to a possible solution of the system

54q1 +6g2 =60
60q; +40¢g2 = 50.

It is possible to formally solve the system of equations, but the unique solution

gives
7 oz 1 oz

d @=--—
@ and g2 =—5 0,

= 6wl
which is not physically possible.

(d) We can write

E
QZ:_QCH"‘%
3 QF
Q2__2q1+407

which are the equations of two lines in the ¢;-go-plane:

72 3

1
o 1 2 3
a7

The intercepts of the first line are Q¥ /54 and Q¥ /6. The intercepts of the second
line are Q¥ /60 and Q¥ /40. Therefore the system will have a unique solution, in
the first quadrant, as long as Q¥ /54 < Q¥ /60 or Q¥ /40 < Q¥ /6. That is,

E
W _QF 20
9 ~QF ~ 3
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N
N

2.(a)
C(14i-2 —142-6\ _ [ 1—i —T+2
A2B<3+2i—4 2—i+4i)<—1+2z’ 2+3i>'
(b)
_(343i+i —3+6i+3\ _ (3+4i  6i
3A+B<9+6i+2 6—32’—2@')(11—1—61’ 6—5i)'
(c)
AB — (I4d)i+2(—-1+2¢) 3(1+414)+ (=14 2i)(—29)
(B+2i)i+2(2—14)  3(3+2i)+ (2 —14)(—2i)
_ (3450 T+5i
“\2+d T+2i)°
(d)
BA — [ (1+1)i+3(3+2i) (=14 2i)i +3(2 — i)
T2 49+ (—20)(3+20) 2(—1+2i)+ (—2i)(2—1)
(84T 4—4i
“\6-4i -4 )
3.(c,d)
-2 1 2 1 3 -2
AT+B" =1 0 -1]+([2 -1 1
2 -3 1 3 -1 0
-1 4 0
=3 -1 0]|=A+B)7".
5 —4 1
4.(b)

— (342 1-—i
A<2+i —2—32')'
(c) By definition,

i (A e )

1—i —2-3i
5.

5 3 —2 10 6 —4

2A+B)=2[0 2 5 |=[0 4 10

2 2 3 4 4 6

7. Let A= (a;;) and B= (b;;). The given operations in (a)-(d) are performed
elementwise. That is,

(a) a5 + bij = bij + ai; .
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(b) asj + (bij + cij) = (aij + bij) + cij -

(c) alaij +bij) = aay + aby;.

(d) (a+pB)ai; =aa; + Bai;.

In the following, let A= (a;;), B= (b;;) and C= (c;;) .

(e) Calculating the generic element,

C)” = Zblk Ckj -
k=1

Therefore

Zazr Zbr/c ck)j Zzazr rk Ckj = Z(Z Qe brk) Ckj-
r=1

r=1k=1 k=1 r=1

The inner summation is recognized as

Z A brk’ = (AB)zk 5

r=1

which is the ¢k-th element of the matrix AB. Thus [A(BC)]U = [(AB)C]U.

(f) Likewise,

[A(B+C)] Z ain(brj + Crj) Z ik bij + Zazk crj = (AB);; + (AC),;
k=1

8.(a) xTy=2(—1+1) +2(3i) + (1 — i) (3 — i) = 4i.

(b) yTy=(-1+i)2+22+(3—-i)2=12-8i.

(c) (x%,y) =2(—1—4) +2(3i) + (1 — i) (3 +i) = 2 + 2i.
(d) (y,y) = (=1+i)(-1—i)+22+ (3—4)(3+14) = 16.
9. Tndeed,

5+3i=x"y =) ay =y"x,
j=1

and

n
3—5i= ijyj Z@j% Zijj_ y, X
j=1
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11. First augment the given matrix by the identity matrix:

Am=(G 5 )

Divide the first row by 3, to obtain

1 -1/3 1/3 0
6 2 0 1)°
Adding —6 times the first row to the second row results in
1 -1/3 1/3 0
0 4 -2 1)
Divide the second row by 4, to obtain
1 -1/3 1/3 0
0 1 -1/2 1/4)°

Finally, adding 1/3 times the second row to the first row results in

(1 0 1/6 1/12>.

01 —1/2 1/4

3 -1\ _1/2 1
6 2) ~12\-6 3)

13. The augmented matrix is

Hence

11 -1 1 0 O
2 -1 1 010
1 1 2 0 01

Combining the elements of the first row with the elements of the second and third
rows results in

11 -1 1

0 -3 3 -2

-1

o = O

0
0
1

Divide the elements of the second row by —3, and the elements of the third row
by 3 . Now subtracting the new second row from the first row yields

0 1/3 1/3 0

10
01 -1 2/3 —1/3 0
00 1 -1/3 0 1/3

Finally, combine the third row with the second row to obtain
1 0 0 1/3 1/3 0
o010 1/3 -1/3 1/3
00 1 —-1/3 0 1/3
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Hence
11 -1\ ! Lf1 10
2 -1 1 =z(1 11
1 1 2 -1 0 1

15. Elementary row operations yield

/2 0 1/2 0 0

1 12 0 1/2 0 |—

o 1 0 0 1/2

~1/4 1/2 -1/4 0 1 0 —-1/4 1/2 —1/4 0
o 0 1/2 -1/4]=>1l0o 1 0o 0 1/2 -1/4
10 0 1/2 00 1 0 0 1/2

01 00 1
101 0]—=1{0
2 0 01 0

OO = OOoON
O R O O N

Finally, combining the first and third rows results in

1 00 1/2 —-1/4 1/8 /2 -1/4 1/8
010 0 1/2 —1/4],s0A4 =|0 1/2 -1/4
001 0 0 1/2 0 0 1/2

16. Elementary row operations yield

1 -1 -1 1.0 0 1 -1 -1 1 00
2 1 0 01 0|=1]0 3 2 —210|=

3 -2 1 00 1 0 1 4 -3 0 1

10 -1/3 1/3 1/3 0 10 0 1/10 3/10 1/10
01 2/3 -2/3 1/3 0|—= (0o 1 0o =-1/5 2/5 -1/5
0 0 10/3 —-7/3 —-1/3 1 0 0 10/3 -7/3 —1/3 1

Finally, normalizing the last row results in

1 0 0 1/10 3/10 1/10 1/10  3/10 1/10
010 —1/5 2/5 —1/5],s0A = —-1/5 2/5 —1/5
0 0 1 —7/10 —1/10 3/10 ~7/10 —1/10 3/10

17. Elementary row operations on the augmented matrix yield the row-reduced
form of the augmented matrix

1 0 —1/7 0 17 2/7
0 1 3/7 0 4/7 1/7
00 0 1 -2 -1

The left submatrix cannot be converted to the identity matrix. Hence the given
matrix is singular.
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18. Elementary row operations on the augmented matrix yield

1 0o 0 -1 1 0 00 1 0 0 -1 1 00 0
0o -1 1 0 01 00 _ 0 -1 1 0 01 0 0 .
-1 0 1 0 0 0 1 0 0 0 1 -1 1010
0 1 -1 1 0 0 01 0o 1 -1 1 00 01
10 0 -1 1 0 0O 100 01 1 01
01 -1 0 0 -1 0 O . 0100 1011
00 1 -1 1 0 10 0 01 o111 1}’
0 0 1 0 1 01 00010101
SO
11 0 1
1 1 0 1 1
AT = 11 11
01 01
19. Elementary row operations on the augmented matrix yield
1 -1 2 0 1 0 0 O 1 -1 2 0 1 0 0 0
-1 2 -4 2 01 00 . o 1 -2 2 1 100 .
1 0 1 3 00 10 o 1 -1 3 -1 010
-2 2 0 -1 0 0 01 o 0 4 -1 2 001
1 0 0 2 2 1 0 0 10 0 2 2 1 0 0
01 -2 2 1 1 00 . 010 4 -3 -1 2 0
0 0 1 1 -2 -1 1 0 o001 1 -2 -1 1 0
00 4 -1 2 0 01 0 00 -5 10 4 -4 1

Normalizing the last row and combining it with the others results in

1002 2 1 0 0 1000 6 13/5 —8/5 2/5
0104 -3 -1 2 0 | fo100 5 11/5 —6/5 4/
0011 -2 -1 1 0 0010 0 —-1/5 1/5 1/5 |
000 1 —2 —4/5 4/5 —1/5 000 1 —2 —4/5 4/5 -1/5

6 13/5 —8/5 2/5
5 11/5 —6/5 4/5
0o -1/5 1/5 1/5
—2 —4/5 4/5 —1/5

20. Suppose that there exist matrices B and C, such that AB =1 and CA =1.
Then CAB = 1B = B, also, CAB = CI = C. This shows that B = C.

23. First note that

;1Y 1\, o (3et+2tet
X —<0>e +2(1>(e +te') = 9! 49t el ) -



7.3

265

N
w

We also have

(=) =) ()

=) ) e
(2=

It follows that

th

-1 1 0o -1 1 —4
—6
= 8 |et+ e?t
4 —4
26. Differentiation, elementwise, results in
et —2e%
U = | —4et 22

—et 272

On the other hand,

1 -1 4 1 -1 4
3 2 -1]1¥T =13 2 -1
2 1 -1 2 1 -1

et —2e~2

= | —det  2e72

—et 2e%

4. The augmented matrix is

2 -1 2
3 -2 2
(2t + 2t
T \3et +2tet

3et + 2t et
2et +2tet |-

—6e~t
Re~t 4 4e?t
det — 42

3e3t
663t
363t

3e3t

(te')

)

3t

2¢3t
3t
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Adding —2 times the first row to the second row and subtracting the first row from
the third row results in

1 2 -1 10
0 -3 3 | O
0 -3 3 | O
Adding the negative of the second row to the third row results in
1 2 -1 1] 0
0 -3 3 | O
0 0 0 | 0
We evidently end up with an equivalent system of equations
1+ 29 —23=0

—r94+2x3=0.

Since there is no unique solution, let x3 = o, where « is arbitrary. It follows that

r9 = a, and x1 = —a. Hence all solutions have the form
-1
r=a| 1
1

5. The augmented matrix is

1 0 -1 ] 0
3 1 1 | 0
11 2 |0

Adding —3 times the first row to the second row and adding the first row to the
last row yields

10 -1 | 0
01 3 |0
01 1 | 0

Now add the negative of the second row to the third row to obtain

10 -1 | 0
01 3 |0
00 -2 1] 0

We end up with an equivalent linear system
Tr1 — T3 = 0
ro+3x3=0
T3 = 0.

Hence the unique solution of the given system of equations is 1 = zo =23 =0.

6. The augmented matrix is
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Adding 2 times the first row to the second row and subtracting 2 times the first
row from the third row results in

12 -1 | -2
00 0 | 0
00 0 0

We evidently end up with an equivalent system of equations
1 + 21‘2 — X3 = —2.

Since there is no unique solution, let o = «, and x3 = [, where «, 8 are arbitrary.

It follows that 1 = —2 — 2 + 8. Hence all solutions have the form
—2—-2a+p
X = @
B
8. Write the given vectors as columns of the matrix
2 0 -1
X=\|11 2
0 0 O

Tt is evident that det(X) = 0. Hence the vectors are linearly dependent. In order
to find a linear relationship between them, write x4 x4+ C3x(3) = 0. The
latter equation is equivalent to

2 0 -1 c1 0
11 2 ca]l =10
0 0 O c3 0

Performing elementary row operations,

2 0 -1 ] 0 10 —-1/2 | 0
11 2 | 0)—=10 1 5/2 | 0
00 0 | O 0 0 0 | 0
We obtain the system of equations
C1—C3/2:O
Cg+503/2:0.

Setting c3 = 2, it follows that ¢; =1 and c¢3 = —5. Hence

xM —5x? 4 2xB) = 0.

10. The matrix containing the given vectors as columns is
1 2 -1 3

0 -1

-1 1 2 1

2 3

We find that det(X) = —70. Hence the given vectors are linearly independent.
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11. Write the given vectors as columns of the matrix

1 3 2 4
X=12 1 -1 3
-2 0 1 =2

The four vectors are necessarily linearly dependent. Hence there are nonzero scalars
such that c;x™ + CQX(Q) +¢3x®) + ¢,x® = 0. The latter equation is equivalent
to

1 3 2 4 0
2 1 -1 3|[%|=]o
20 1 -2)|% 0
Cq
Performing elementary row operations,
1 3 2 4 | 0 1001 | O
2 1 -1 3 |J] 0]—=1(0 10110
-2 0 1 =210 0010 O
We end up with an equivalent linear system
61+C4:0
ca+cys=0
03:0.

Let ¢4 = —1. Then ¢; =1 and cg = 1. Therefore we find that
x4+ x@ _x® =,

12. The matrix containing the given vectors as columns, X, is of size n x m . Since
n < m, we can augment the matrix with m — n rows of zeros. The resulting matrix,
X, is of size m x m. Since X is a square matrix, with at least one row of zeros,
it follows that det(X) = 0. Hence the column vectors of X are linearly dependent.
That is, there is a nonzero vector, ¢, such that Xc= 0,1 . If we write only the first
n rows of the latter equation, we have Xc= 0,,x1 . Therefore the column vectors of
X are linearly dependent.

13. By inspection, we find that
1 2 —e !
xM (1) —2x@ () = ( 0 ) .
Hence 3x(M(t) — 6x3 (t)4x®)(t) = 0, and the vectors are linearly dependent.
17. The eigenvalues \ and eigenvectors x satisfy the equation
3—-A -2 I o 0
4 —1-X)\z/)  \0)
For a nonzero solution, we must have (3 — A)(—1 —\) +8 =0, that is,

A2 922 +5=0.
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The eigenvalues are Ay =1 —2¢ and Ay =1+ 2¢. The components of the eigen-
vector x(1) are solutions of the system

(5 ) ()= ()

The two equations reduce to (14 i)z = x5 . Hence x(!) = (1,1 +14)7. Now setting
A=Ay =1+2i, we have

2-2i -2 AN
4 —-2-2i) \azy)  \0O)’
with solution given by x(?) = (1,1 —4)7.

18. The eigenvalues A and eigenvectors x satisfy the equation
—2-Xx 1 z1\ (0
For a nonzero solution, we must have (-2 — \)(—=2— ) —1 =0, that is,

A2 4+40+3=0.

The eigenvalues are A\; = —3 and Ay = —1. For A\; = —3, the system of equations

becomes
1 1 I - 0
1 1 To B 0/’

which reduces to x1 +x3 = 0. A solution vector is given by x(*) = (1, —~1)T. Sub-
stituting A = Ay = —1, we have

—1 1 I o 0
1 —1 To —\o/’
The equations reduce to z; = x5 . Hence a solution vector is given by x(® = (1,1)7.

20. The eigensystem is obtained from analysis of the equation

1-X V3 x1y (0
V3 —1-X) \azp)  \0)
For a nonzero solution, the determinant of the coefficient matrix must be zero.

That is,
A2 —4=0.

Hence the eigenvalues are Ay = —2 and Ay = 2. Substituting the first eigenvalue,

A= -2, yields
(s ) () -0)

The system is equivalent to the equation /3 z; + 25 = 0. A solution vector is
given by x(1) = (1, —v/3)T. Substitution of A = 2 results in

(v %) ()=6)
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which reduces to 21 = V3 z5. A corresponding solution vector is x(2) = (ﬁ, l)T.

21. The eigenvalues A and eigenvectors x satisfy the equation
-3-) 3/4 z1\ _ (0
-5 1—X To - 0/
For a nonzero solution, we must have (—3 —A)(1 — \) 4+ 15/4 = 0, that is,

A +2X+3/4=0.

Hence the eigenvalues are Ay = —3/2 and A2 = —1/2. In order to determine the
eigenvector corresponding to A1, set A = —3/2. The system of equations becomes

(35 3) ()= ()

which reduces to —2x; + 22 = 0. A solution vector is given by x() = (1,2)T.
Substitution of A = Ay = —1/2 results in

-5/2 3/4\ (z1\ (O
-5 3/2) \as) \0)’
which reduces to 10z; = 3z5. A corresponding solution vector is x(2) = (3,10)7.

23. The eigensystem is obtained from analysis of the equation

3-\ 2 2 1 0
1 4-) 1 2o | = |0
2 4 —1-)) \ay 0

The characteristic equation of the coefficient matrix is A3 —6A2+11A—6 =0,
with roots A\; =1, Ay =2 and A3 = 3. Setting A = A1 =1, we have

2 2 2 T1 0
1 3 1 ZTo =10
-2 —4 —-2) \z3 0

This system is reduces to the equations
1 +x3=0
To = 0.

A corresponding solution vector is given by x(1) = (1,0,-1)T. Setting A = Xy = 2,
the reduced system of equations is

x1+2x9=0
IL’3:0.

A corresponding solution vector is given by x(?) = (—=2,1,0)”. Finally, setting
A = A3 = 3, the reduced system of equations is

SC1:0
To+x3=0.

A corresponding solution vector is given by x(3) = (0,1, —1)7.
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24. For computational purposes, note that if A is an eigenvalue of B, then cA\ is
an eigenvalue of the matrix A= c¢B . Eigenvectors are unaffected, since they are
only determined up to a scalar multiple. So with

1 -2 8
B=|-2 2 10],
8§ 10 5
the associated characteristic equation is pu3 — 1812 — 81 + 1458 = 0, with roots
11 =—-9, uo =9 and p3z = 18. Hence the eigenvalues of the given matrix, A, are
A =-1,x=1 and A3 =2. Setting A = A\; = —1, (which corresponds to using
p1 = —9 in the modified problem) the reduced system of equations is
2 xr1 + Tr3 = 0
To +x3=0.

A corresponding solution vector is given by x(") = (1,2, -2)7. Setting A= \o = 1,
the reduced system of equations is
1 +2x3=0
X9 — 2 I3 = 0.
A corresponding solution vector is given by x(?) = (2, -2, —1)7. Finally, setting
A= Ay =1, the reduced system of equations is
Tr1 — T3 = 0

21’271‘3:0.

A corresponding solution vector is given by x®) = (2,1,2)7.

26.(b) By definition,
n n n
(Ax,y) =) (Ax)iTi=>_ > aijz; Ui
i=0 i=03=0

Let b;; = @j; , so that a;; = b;; . Now interchanging the order or summation,

n n n n
(Ax,y) = Zj Zaw yi:zmj Zbﬂyz
7=0 =0 j= =0
Now note that
n o n
ijzii: bjl Yi = (A*y)j

Therefore

(Ax,y) = Z zj (A%y); = (x,A%y).

(¢) By definition of a Hermitian matrix, A=A*.
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27. Suppose that Ax= 0, but that x# 0. Let A= (a;;). Using elementary row
operations, it is possible to transform the matrix into one that is not upper trian-
gular. If it were upper triangular, backsubstitution would imply that x= 0. Hence
a linear combination of all the rows results in a row containing only zeros. That
is, there are n scalars, f3;, one for each row and not all zero, such that for each for

column 7,
Z Bia;; =0.

=1

Now consider A* = (b;;). By definition, b;; = @j;, or a;; = b;; . It follows that for

each j,
Zﬁi@: Z bjk B = Z bk Br = 0.
i=1

Let y= (B1,B2, - , Bn)T. Hence we have a nonzero vector, y, such that A*y= 0.

29. By linearity,
A +08)=AxY a0 AE=b+0=D.

30. Let ¢;; = @j; . By the hypothesis, there is a nonzero vector, y, such that

n n
Z Cijyjzz@yjzo,isz,...’n_

i=1 i=1

Taking the conjugate of both sides, and interchanging the indices, we have

This implies that a linear combination of each row of A is equal to zero. Now
consider the augmented matrix [A |B]. Replace the last row by

n n
Z Yi [aﬂ,aig,--~ ,am,bi] =10,0,--- ,O,Z ;i b;
i=1 i=1
We find that if (B,y) = 0, then the last row of the augmented matrix contains only
zeros. Hence there are n — 1 remaining equations. We can now set x,, = «, some
parameter, and solve for the other variables in terms of « . Therefore the system
of equations Ax=b has a solution.

31. If A =0 is an eigenvalue of A, then there is a nonzero vector, x, such that

Ax=)Ax=0.

That is, Ax= 0 has a nonzero solution. This implies that the mapping defined
by A is not 1-to-1, and hence not invertible. On the other hand, if A is singular,
then det(A) = 0. Thus, Ax= 0 has a nonzero solution. The latter equation can
be written as Ax= 0x.
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32.(a) Based on Problem 26, (Ax,x) = (x, Ax).

(b) Let x be an eigenvector corresponding to an eigenvalue A. It then follows that
(Ax,x) = (\x,x) and (x,Ax) = (x,)x). Based on the properties of the inner
product, (Ax,x) = A(x,x) and (x,Ax) = A(x,x). Then from part (a),

Ax,x) = A(x,x).

(¢) From part (b), B
(A=XN)(x,x)=0.

Based on the definition of an eigenvector, (x,x) = [|x||* > 0. Hence we must have

A — A =0, which implies that X is real.

33. From Problem 26(c),
(AxM x@) = (x1 Ax?).

Hence
() x @) = R (x® x@) = Ay (x), xD),

since the eigenvalues are real. Therefore
(A1 = A)(xD)  x®) =0.

Given that \; # Ay, we must have (x(1) x(?) =0.

3. Equation (14) states that the Wronskian satisfies the first order linear ODE
aw
dt
The general solution of this is given by Equation (15):

= (p11 + D22+ + pon) W.

)

W(t) =C ef(PllJr;DQer---ernn)dt

in which C' is an arbitrary constant. Let X; and X, be matrices representing two
sets of fundamental solutions. It follows that

det(Xl) =W (t) = C’lef(Pllerzer-..+pnn)dt
det(Xy) = Wa(t) = Cyed (Pritpeattpan)dt

Hence det(X;)/det(Xs3) = Cy/Cs. Note that Cs # 0.

4. First note that pi1 + pa2 = —p(t). As shown in Problem 3,

W [Xu) 7X<2>} — ce— Pt
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For second order linear ODE, the Wronskian (as defined in Chapter 3) satisfies the
first order differential equation W'+ p(t)W = 0. It follows that

1174 {yu) 7y<2>] e 0L
Alternatively, based on the hypothesis,

1
y( ) = Q11 211 + Q12 T12

Y(Q) = Q21 T11 + Q22 T12 -
Direct calculation shows that
W {yu) ’y<2>} —

i /
= (a11a22 - 04120421)33113312 - (CY110é22 - 04120421)56123311

= (11022 — @12021)T11T22 — (11022 — Q120021 )T 12221 -

Q11 T11 + Q1212 Q21 11 + Q22 T2
/ !/ ! /
Q11217 Q1215 Qo1 Ty + Qa2 X9

Here we used the fact that x} = x5 . Hence

w {y(l) 7y(2):| = (11092 — arpa0))W [X(l) 7){(2)] .

5. The particular solution satisfies the ODE (x(P)) =P(#)x()+g(t). Now let x
be any solution of the homogeneous equation, x’ =P(t)x . We know that x=x(¢),
in which x(® is a linear combination of some fundamental solution. By linearity
of the differential equation, it follows that x =x® +x(°) is a solution of the ODE.
Based on the uniqueness theorem, all solutions must have this form.

7.(a) By definition,
t
| = (2 —2t)et.

2
1) (@] _[t7 e
w [X X ] ‘215 e

(b) The Wronskian vanishes at tg =0 and t; = 2. Hence the vectors are linearly
independent on D = (—o00,0) U (0,2) U (2,00).

(c) It follows from Theorem 7.4.3 that one or more of the coefficients of the ODE
must be discontinuous at tg =0 and tg=2. If not, the Wronskian would not

vanish.

(d) Let

Then
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On the other hand,

tQ t

P11 P12 X = ¢ P11 P12 + ¢y P11 P12 €

P21 P22 D21 P22 2t P21 D22 et
_ <C1 [p11t% + 2p1at] + c2 [p11 + p12) €t>

c1 [pa1t? + 2past] + c2 [pa1 + pao) €

Comparing coefficients, we find that

pit? + 2piot = 2t

pi1+pi2 =1
part? + 2paot = 2
p21 +p22=1.

Solution of this system of equations results in

2—2t 2 -2
p1i(t) . p12(t) o p2(t) 2 _ o p22(t) 2 _ 9

Hence the vectors are solutions of the ODE
oo 1 0 t>-2t N
T2 \2-2t 2-2 ’

8. Suppose that the solutions x| x(2) ... x(™) are linearly dependent at t = t .

Then there are constants ¢ ,c¢a,- -, ¢y, (n0t all zero) such that

m)

crxW(tg) + caxP(tg) + -+ + emx™(tg) = 0.

Now let z(t) = c;x(M (t) + coxP (t) + - - + ¢, x™) (). Then clearly, z(t) is a solu-
tion of x’ =P(¢)x, with z(tp) = 0. Furthermore, y(¢) = 0 is also a solution, with
y(to) = 0. By the uniqueness theorem, z(t) =y(¢) = 0. Hence

erxM () + eaxP () + -+ erx™ () = 0

on the entire interval o < t < . Going in the other direction is trivial.

9.(a) Let y(¢) be any solution of x’ =P(¢)x. It follows that
2(t) + y(t) = exxV () + eox (8) + -+ eax™ (1) + ¥ (1)
is also a solution. Now let ¢y € (o, 8). Then the collection of vectors
xM(t9),x P (to), . .., x"" (to), y(to)

constitutes n + 1 vectors, each with n components. Based on the assertion in
Problem 12, Section 7.3, these vectors are necessarily linearly dependent. That is,
there are n + 1 constants by, ba,..., by, byt1 (not all zero) such that

bixM (to) + box P (tg) + -+ + byx™ (to) + byr1y(to) = 0.
From Problem 8, we have

bixM () + box@ (t) 4 - + bpx ™ (t) + byy1 y(t) = 0
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-

forallt € (a, B8). Now b1 # 0, otherwise that would contradict the fact that the
first n vectors are linearly independent. Hence

(b1 (£) + box@ () + - - + b x™ (1)),

y(t) = —
n+1

and the assertion is true.

(b) Consider z(t) = c;xM (t) +c2 xP(t) + - + ¢, x"(¢), and suppose that we
also have
z(t) = kixW () + kox® () 4 - - - + knx™(2) .

Based on the assumption,
(k1 = e0)x M (8) + (ko = e)x®(#) + - + (ko = a)x" (1) = 0.
The collection of vectors
xW ), x@(t),...,.xM ()

is linearly independent on o < ¢t < . It follows that k; —¢; =0,for i =1,2,--- ,n.

2.(a) Setting x= €e™, and substituting into the ODE, we obtain the algebraic

equations
1—r -2 & _ 0
3 —4—-r)\&/)  \o)’

For a nonzero solution, we must have det(A — rI) = 72 + 3r + 2 = 0. The roots of
the characteristic equation are r; = —1 and ro = —2. For » = —1, the two equations
reduce to &1 = &. The corresponding eigenvector is 5(1) = (1,1)T. Substitution of
r = —2 results in the single equation 3§; = 2£>. A corresponding eigenvector is
£ = (2,3)T. Since the eigenvalues are distinct, the general solution is

A A A Py
£ 4 4 o4 s -
4 4 44 e am
A A A —
A A A xR
4 4 4 4 ~R % ¢
4 A A A r et
A rrrr
L4 o4 A 77 77
v /o b4 Lz
77 77
7 r 7
27 r 7
Vs 77
Vs 77
Vs 77
yy
Vs Vs
Vs Vs
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3.(a) Setting x= € " results in the algebraic equations

(5 2t (@) -6)

For a nonzero solution, we must have det(A — rI) = r? — 1 = 0. The roots of the
characteristic equation are r; = 1 and ro = —1. For r = 1, the system of equations
reduces to & = &;. The corresponding eigenvector is 5(1) = (1,1)T. Substitution
of r = —1 results in the single equation 3§; = &. A corresponding eigenvector is
5(2) = (1,3)T. Since the eigenvalues are distinct, the general solution is

1 , N
x:clleJchSe.

LA AL A A A A
LA A A AL LA
L LA AL
LA AL v
R
N A AN
LA LA A AP Sy
ey & A S
NN LY S A A
NN & 2 A
PAFAPErSy Gy A
v S S AR A A
N IAD AAAA A
v L i p A r AR
< S Cr 22227z
AAAA AR
L o AAAA AR
A AAPAL A
= AAAAAAL
AAAA AR
The system has an unstable eigendirection along € = (1,1)7. Unless ¢; = 0, all

solutions will diverge.

4.(a) Solution of the ODE requires analysis of the algebraic equations

(37 =R (e)=6)

For a nonzero solution, we must have det(A —rI) =72 +r—6 =0. The roots

of the characteristic equation are r; = 2 and ro = —3. For r = 2, the system of
equations reduces to & = &;. The corresponding eigenvector is & = (1,1)". Sub-
stitution of r = —3 results in the single equation 4&; + & = 0. A corresponding

eigenvector is !;“(2) = (1,—4)T. Since the eigenvalues are distinct, the general solu-

tion is ) )
X=0 <1) e 4 ¢y (_4) e 3t
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(b)
R IR N Tee— 7
T v
IR R IR g4
R IR 7
I R I 27
R I 27
v 4L d LY r 7
AR E r7
VIR A I .‘ 7
L4 434 4 Jd 4 FEf E 3
444 4 ¥ v Tt 1 [x7 1 7
Y s A\ttt A
4 4 4 s T tt t 1
Ry AW trttrtrt
¥ ¥ f & N\ 1 ttt 11
v S AN G RS
S AN N\
LY bt e NN R\ T 11
D e e S S AN R0 AL U T O S B
The system has an unstable eigendirection along 5(1) = (1,1)T. Unless ¢; = 0, all

solutions will diverge.

8.(a) Setting x= £ e"* results in the algebraic equations

3—r 6 SANEAY
-1 -2—-r)\&) o)
For a nonzero solution, we must have det(A —7I) = r? —r = 0. The roots of the
characteristic equation are r; = 1 and ro = 0. With r» = 1, the system of equations
reduces to & + 3¢5 = 0. The corresponding eigenvector is E(l) = (3,—1)T. For the

case r = 0, the system is equivalent to the equation & + 2§35 = 0. An eigenvector
is £ = (2, —1)T. Since the eigenvalues are distinct, the general solution is

3N . 2
X =1 1 e + co 1)

The entire line along the eigendirection 5(2) = (2,—1)T consists of equilibrium
points. All other solutions diverge. The direction field changes across the line
1 + 229 = 0. Eliminating the exponential terms in the solution, the trajectories
are given by 21 + 312 = —cso.
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10. The characteristic equation is given by

2 —T 2 + Z 2 . .
1 _i_glTT 1—-dr—i=0.
The equation has complex roots r; = 1 and ro = —i. For r = 1, the components of
the solution vector must satisfy & + (2 + )& = 0. Thus the corresponding eigen-
vector is 5(1) = (2+1i,—1)T. Substitution of r = —i results in the single equation

& + & = 0. A corresponding eigenvector is 5(2) = (1,—-1)T. Since the eigenvalues
are distinct, the general solution is

241 1 )
X =0 ( —i_ll) et + ¢y <1> e,

11. Setting x= £ e results in the algebraic equations

1—r 1 2 & 0
1 2—r 1 &Hl=1(0
2 1 1-r) \& 0

:7"3—4T2—7‘+4:O- The

For a nonzero solution, we must have det(A — rI)
=1 and r3 = —1. Setting r =4,

roots of the characteristic equation are 11 = 4, rg
we have

—_
|
[\
=
I
¥
I

o O O

This system is reduces to the equations
& —&=0
§2—& =0.

A corresponding solution vector is given by E(l) = (1,1,1)T. Setting A =1, the
reduced system of equations is

& —&=0
§2+2&=0.
A corresponding solution vector is given by 5(2) = (1,-2,1)T. Finally, setting
A = —1, the reduced system of equations is
& +&=0
§=0.

A corresponding solution vector is given by &€ = (1,0, —1)7. Since the eigenval-
ues are distinct, the general solution is

1 1 1
x=c |1 e4t—|—02 —2|et+e5| 0 | et
1 1 -1
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12. The eigensystem is obtained from analysis of the equation

3 —-Tr 2 4 51 0
2 -r 2 52 =10
4 2 3—-r &3 0
The characteristic equation of the coefficient matrix is 73 — 6r2 — 15r — 8 = 0, with
roots 1, =8, 1o = —1 and r3 = —1. Setting r =r; = 8, we have
-5 2 4 & 0
2 -8 2 &1 =10
4 2 =5 &3 0
This system is reduced to the equations
§1—-&6=0
286, —63=0.

A corresponding solution vector is given by e = (2,1,2)7. Setting r = —1, the
system of equations is reduced to the single equation

261 +&+2863=0.
Two independent solutions are obtained as
¢? =(1,-2,07 and ¢¥ =(0,-2,1)T.

Hence the general solution is

2 1 0
x=c |1 St + o | —2)et+es| -2t
2 0 1

13. Setting x= £ e results in the algebraic equations

1—r 1 1 3 0
2 1-r -1 =10
-8 -5 -3-r) \& 0

For a nonzero solution, we must have det(A —rI) =73 +7r% —4r —4=0. The
roots of the characteristic equation are r1 =2, ro = —2 and r3 = —1. Setting
r =2, we have

-1 1 1 &

2 -1 -1 &H =

-8 -5 —5b &3

oS OO

This system is reduces to the equations
=0
§2+&3=0.
A corresponding solution vector is given by e = (0,1,-1)T. Setting A\ = —1,
the reduced system of equations is
26 +3& =0
& —2&=0.
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A corresponding solution vector is given by 6(2) = (3,-4,-2)T. Finally, setting

A = —2, the reduced system of equations is
76 +48 =0
Té —5&3=0.

A corresponding solution vector is given by 5(3) = (4,-5,-7)T. Since the eigen-
values are distinct, the general solution is

0 3 4
x=c1 | 1 |e®+e|—4])et+es|—5]e 2.
-1 -2 -7

15. Setting x= £ €™ results in the algebraic equations

(2" 2 ()= o)

For a nonzero solution, we must have det(A —7I) =72 —6r +8 = 0. The roots
of the characteristic equation are 71 =4 and ro =2. With r =4, the system of
equations reduces to & — & = 0. The corresponding eigenvector is 5(1) =(1,1)7.
For the case r = 2, the system is equivalent to the equation 3& — & =0. An
eigenvector is & 2 = (1,3)T. Since the eigenvalues are distinct, the general solution

1S
1 1
X =C (1) et + Co (3) et

Invoking the initial conditions, we obtain the system of equations

c1+co =2
Cl+302:—1.

Hence ¢; =7/2 and ¢; = —3/2, and the solution of the IVP is

TN 3(1
X_2<1)e 2(3)6'

17. Setting x= £ " results in the algebraic equations

1—r 1 2 & 0
0 2—-r 2 &Hl=1o0
—1 1 3-r) \g 0

For a nonzero solution, we must have det(A —rI) =3 —6r2 +11r — 6 =0. The
roots of the characteristic equation are 11 =1, r, =2 and r3 = 3. Setting r =1,
we have

0 1 2 & 0
0 1 2 &1 =10
—1 1 2/ \g 0
This system reduces to the equations
§&1=0

§2+25=0.
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A corresponding solution vector is given by 5(1) =(0,-2,1)T. Setting A\ =2, the
reduced system of equations is

§1—6&=0

£3=0.

A corresponding solution vector is given by & @ = (1,1,0)T. Finally, upon setting
A = 3, the reduced system of equations is

§&1—28 =0

& —2&=0.

A corresponding solution vector is given by & G) = (2,2,1)T. Since the eigenvalues
are distinct, the general solution is

0 1 2
x=c1 | -2|e+e |1 et + c3 |2 e3t.
1 0 1

Invoking the initial conditions, the coefficients must satisfy the equations

co+2c3 =2
—2c1+ca+2c3=0
Cl+03:1.

It follows that ¢; =1, co =2 and ¢3 = 0. Hence the solution of the IVP is

0 1
x=|-2]e+2(1]¢*.
1 0

18. The eigensystem is obtained from analysis of the equation

-r 0 -1 61 0
2 -r 0 fg =10
-1 2 4-r & 0
The characteristic equation of the coefficient matrix is r3 — 472 —r +4 =0, with
roots 11 = —1, 79 =1 and r3 =4. Setting r =r; = —1, we have
-1 0 -1 & 0
2 -1 0 &1 =10
-1 2 3 &3 0

This system is reduced to the equations
&i—&=0
§2+2&=0.
A corresponding solution vector is given by 5(1) = (1,-2,1)T. Setting r =1, the
system reduces to the equations
&1+&=0
§2+28=0.
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The corresponding eigenvector is 5(2) = (1,2,—1)T. Finally, upon setting r =4,
the system is equivalent to the equations

46 +86 =0
8& +&3=0.

The corresponding eigenvector is 5(3) = (2,1,—8)T. Hence the general solution is

1 1 2
x=c1 [-2]et+e| 2 |et+es| 1 | e
1 -1 -8

Invoking the initial conditions,
c1+ca+2c3="7
7261 +262+03 :5
81—62—863:5.
It follows that ¢; =3, co =6 and c3 = —1. Hence the solution of the IVP is

1 1
x=3[-2]et+6| 2 |- 1 | e*.
1 -1 -8

19. Set x= £t". Substitution into the system of differential equations results in
t-rttlE = A€t

which upon simplification yields is, A € — r€ = 0. Hence the vector € and constant
r must satisfy (A —rI)é =0.

21. Setting x= £t" results in the algebraic equations

(3" 2 (E)= o)

For a nonzero solution, we must have det(A —rI) =r% — 6r +8 = 0. The roots
of the characteristic equation are r1 =4 and ro = 2. With r =4, the system of
equations reduces to & — & = 0. The corresponding eigenvector is 5(1) =(1,1)T.
For the case r = 2, the system is equivalent to the equation 3&; — £&, =0. An
eigenvector is € = (1,3)7. It follows that

1 1
x( = <1>t4 and x® = <3>t2.

The Wronskian of this solution set is W [x(1)7x(2)] = 2t5. Thus the solutions are
linearly independent for ¢ > 0. Hence the general solution is

1 1
X=c <1> tt+ Co (3> 2.

22. As shown in Problem 19, solution of the ODE requires analysis of the equations

(57 ) @) =)
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For a nonzero solution, we must have det(A —7I) =72+ 2r =0. The roots of

the characteristic equation are 71 =0 and r, = —2. For r =0, the system of
equations reduces to 4& = 3&,. The corresponding eigenvector is € = (3,4)7.
Setting r = —2 results in the single equation 2&; — & = 0. A corresponding eigen-

vector is €2 = (1,2)7. Tt follows that

1
x(D) = (2) and x(?) = (2)1,‘_2.

The Wronskian of this solution set is W [x(l),x@)} = 2¢72. These solutions are
linearly independent for ¢ > 0. Hence the general solution is

3 1\ o
X=C 4 + co 2t .

23. Setting x= £t" results in the algebraic equations

(7 2@ =)

For a nonzero solution, we must have det(A —rI) =r? —r —2 = 0. The roots of
the characteristic equation are r; =2 and ro = —1. Setting r = 2, the system of
equations reduces to &1 — 2§, = 0. The corresponding eigenvector is E(l) = (2,17,
With r = —1, the system is equivalent to the equation 2¢; — £ = 0. An eigenvector
is £€® = (1,2)T. 1t follows that

2 1
x(D = (1)t2 and x? = (2)t_1.

The Wronskian of this solution set is W [x(l),x@)] = 3t. Thus the solutions are
linearly independent for ¢t > 0. Hence the general solution is

2 1
X =cC1 <1)t2 +c2 <2) L.

24.(a) The general solution is

— N\ \ v 4 gl 4 & L L
———a~a N\ \ I Y ¥ & &
—————a~a N N R e s
e e S S\ WIS A S
—= == NN\\N YA A A S
»»»»» = W\ 3 4 o S
— T \ i A A L A i
PSSR\ \ | V. S A o e
o v _v_v_»—>—aQlf , Pay's o o o &
Bl el | VB P D
AL I P IR
PPl ol ol g S e e o o o
o~ o 7 A 1 *\ ~ e e o o
P A LY N
Rl R 7 7 NS
Ao A AR NN S
A //’//‘/‘f,;f‘?\ NS T
SRR Ay A S D VN Ak
AR Vo & Tt t R R e hahes
VAR 7Pt 1 AR R N N T



285

7.5

x/

26.(a) The general solution is

NN RN RN N S Tl d— 44—
AN SR O S N LNl S S e et et e e o
NN ffq/./fd/a/«/.}a/t!nl;lslbla\n\»\
A N R R A e

N NS NN o

RN AN N R g z

/v KR KNAR, R e /

N\ \\N‘ﬂ
3

LR YVZ OO AL

SN O

f

! S5 ST W
/ e = A S SO

7 AR~ S e S NN N

X bbb —d—D—>

Db —>—b—d—D—>—D~b

P> —>—>—D—>—D—D—DD

G e

BB BB NN N N

o0
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130:
100:
l40:
120 1
100:
80:
60 -
40:

20

28.(a) We note that (A —r;1)é® =0, for i =1,2.
(b) Tt follows that (A — roI)€W) =A €W — @ = 1@ — e

(¢) Suppose that 5(1) and 5(2) are linearly dependent. Then there exist constants
c1 and co, not both zero, such that 015(1) + 025(2) = 0. Assume that ¢; #0. It
is clear that (A — roI)(c1€™W) + ¢, £®) = 0. On the other hand,

(A —roD)(c1€W) + 2 €P@) = ¢ (11 — 12)€W +0 = 1 (ry —12)€W.

Since 71 # ro, we must have ¢; = 0, which leads to a contradiction.
(d) Note that (A — 1 D)€@ = (ry — r1)E@.

(e) Let n = 3, with 1 # r2 # 3. Suppose that 5(1), !;“(2) and 5(3) are indeed linearly
dependent. Then there exist constants ¢y, co and cs, not all zero, such that
Clé(l) + 026(2) + 036(3) =0.

Assume that ¢; #0. It is clear that (A — rgl)(clf(l) + ¢y 5(2) + c3£(3)) =0. On
the other hand,

(A = roI)(c1€W) + 2 €@ + c36®)) = ¢1 (11 — r2)€W + e5(r5 — 12)€P).
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It follows that c¢;(rq; — rg)é'(l) +es(rs — r2)£(3) = 0. Based on the result of part
(a), which is actually not dependent on the value of n, the vectors & Mand 13 ®) are
linearly independent. Hence we must have c¢;(r; —re) = c3(rs — r2) = 0, which
leads to a contradiction.

29.(a) Let 2y =y and x5 = y'. Tt follows that x{ = 25 and

"

1
vy =y" = ——(cy+by’).
In terms of the new variables, we obtain the system of two first order ODEs

!/
Jj1:$2

1
g = —5(0961 +bxy).

(b) The coefficient matrix is given by

A <_Oc _1b> .

Setting x= € " results in the algebraic equations

T 1 51 . O
-t le) =)
For a nonzero solution, we must have
9 b c
det(A —rI) =714+ -—r+—-=0.
a a
Multiplying both sides of the equation by a, we obtain ar? +br +c=0.
30.(a) Solution of the ODE requires analysis of the algebraic equations
~1/10—r  3/40 &) (0
1/10 -1/5—-r)\&)  \0o)°
For a nonzero solution, we must have det(A — rI) = 0. The characteristic equation
is 8072 +247 +1 =0, with roots 7, = —1/4 and 7, = —1/20. With r = —1/4,
the system of equations reduces to 2&; + €2 = 0. The corresponding eigenvector is

¢ = (1,-2)T. Substitution of 7 = —1/20 results in the equation 2& — 3& = 0.
A corresponding eigenvector is 5(2) = (3,2)T. Since the eigenvalues are distinct,

the general solution is
1 3
X=cC (2) et/ +co (2> e t/20,

Invoking the initial conditions, we obtain the system of equations

C1 +3C2 =17
—261+262 —21.
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Hence ¢; =29/8 and ¢y = —55/8, and the solution of the IVP is

29/ 1N\ u 553\ im0
x_S(Q)e 8(2)e |

(c) Both functions are monotone increasing. It is easy to show that —0.5 < z1(¢) <0
and —0.5 < z3(t) < 0 provided that t > T ~ 74.39.

32.(a) The system of differential equations is

ilv) - (' ) ()

Solution of the system requires analysis of the eigenvalue problem

(o -a2) (@)= ()

The characteristic equation is 72 4+ 3r +2 = 0, with roots r, = —1 and 7, = —2.
With r = —1, the equations reduce to £& — & = 0. A corresponding eigenvector
is given by €M = (1, )T, Setting r = —2, the system reduces to the equation
361 — & = 0. An eigenvector is £ = (1,3)7. Hence the general solution is

£)-o()eel

(b) The eigenvalues are distinct and both negative. We find that the equilibrium
point (0,0) is a stable node. Hence all solutions converge to (0, 0).

33.(a) Solution of the ODE requires analysis of the algebraic equations

B _ 1 &\ (0
%7 ) (8)-0)

The characteristic equation is

L+ CRiR,

R +R
2 1 2
"+ (" Iem,

It Tem, O
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N

The eigenvectors are real and distinct, provided that the discriminant is positive.
That is,

L+CRiRy Ry + Ry
ik Sk R T Gt S k]
“Ier, ) Cem, 170
which simplifies to the condition
1 Ry, 4
- —) == >0.
Cm 1) "¢’

(b) The parameters in the ODE are all positive. Observe that the sum of the roots
is
L
_LACRiRy
LCRs
Also, the product of the roots is
R+ Ry
LCR;

It follows that both roots are negative. Hence the equilibrium solution I =0, V =0
represents a stable node, which attracts all solutions.

>0.

(c) If the condition in part (a) is not satisfied, that is,

( 1 Ry
CRy L

then the real part of the eigenvalues is

L+ CRiRy
2LCRy

As long as the parameters are all positive, then the solutions will still converge to
the equilibrium point (0,0).

RG(TLQ) = —

2.(a) Setting x= € " results in the algebraic equations

7 )E)-6)

For a nonzero solution, we require that det(A — rI) = r%2 +2r + 5 = 0. The roots
of the characteristic equation are r = —1 £ 2¢. Substituting r = —1 — 2¢, the two
equations reduce to & + 2i&; = 0. The two eigenvectors are e = (—2i,1)T and
e® = (2i,1)T. Hence one of the complex-valued solutions is given by

_9; 4 —9
x(M) = < ) Z) e (120t — < ) Z) e *(cos 2t — i sin 2t) =

et —2 sin 2t et —2 cos 2t
B cos 2t —sin 2t )’
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Based on the real and imaginary parts of this solution, the general solution is

X = et —2 sin 2t feyet 2 cos 2t
- cos 2t g sin 2t )’

o o el l e b e a2

e > > > > > 4w > v v v v _w v _v T _T

3.(a) Solution of the ODEs is based on the analysis of the algebraic equations

(2@ =)

For a nonzero solution, we require that det(A — rI) = r2 + 1 = 0. The roots of the
characteristic equation are r = +i. Setting r = i, the equations are equivalent to
&1 — (24 i) = 0. The eigenvectors are €V = (2+i,1)T and €@ = (2—i,1)7T.
Hence one of the complex-valued solutions is given by

24143\ . 2414
X(l):< Tz)e”:< _1|—Z>(cost—|—isint)=

2cost—sint fcost+2sint
= +1 . .
cos t sin t

Therefore the general solution is

2cost—sint cost+2sint
X =C +co . .
cos t sin t

The solution may also be written as

5 cost n 5 sin t
X=c c .
! 2cost+sint 2 —cost+2sint
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4.(a) Setting x= £ " results in the algebraic equations

(o 32 () =0)

For a nonzero solution, we require that det(A —rI) =r? —r+ 2 = 0. The roots
of the characteristic equation are r = (1 £ 3¢)/2. With r = (1 + 34)/2, the equa-
tions reduce to the single equation (3 —3i)§; — 5& = 0. The corresponding eigen-
vector is given by E(l) = (5,3 —3i)T . Hence one of the complex-valued solutions

is
) ; 2414 3 3

1 _ (143i)t/2 _ t/2 O Oy

x —(3_3i>e —( 1 )e (cos 2t—|—zsm 275)—

2 (2 cos 3t — sin 2t) et (COb St + 2 sin 2t).

cos 2t sin 2t

The general solution is

3 -3 3 .3
x:clet/Q 2 cos 5t —sin 5t +Cg€t/2 cos 5t + 2 sin 5t .
cos %t sin %t

The solution may also be written as

5 cos 3t 5 sin 3¢
x:cletm( 5 2 3>+626t/2( 5 2 3>.
3 cos St+ 3sin St —3 cos St+ 3sin ot
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o o o e T T o a o o
o7 o o T aT a a e e

5.(a) Setting x= £t" results in the algebraic equations

1—r -1 &\ (0
5 -3—-r)\&/) \o)’
The characteristic equation is 72 + 27 + 2 = 0, with roots 7 = —1 + i. Substitut-
ing r = —1 — 4 reduces the system of equations to (2 + i)&; — & = 0. The eigenvec-

tors are 5(1) = (1,2414)7 and 5(2) = (1,2 —14)T. Hence one of the complex-valued
solutions is given by

1 ; 1
(1) _ (it _ sy
x <2+i)e (2—1—1')6 (cos t — i sin t)

—t cos t — —sint
=e . + e . .
2cost+sint cost—2sint

The general solution is

X = et cos t teset sin ¢
- 2 cost—+sint 2 —cost+2sint)

T T T T

T T S

e T T T T e T S S
P T T T e T T B RS
N NN W
T T T T T T R S

e b b e S e e e
AR BB Db DD —D—D—P P
S S b e e S S
e b e O S

PEPEP IR IR IR R
TR RS
P AP IR IR I
N &t
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6.(a) Solution of the ODEs is based on the analysis of the algebraic equations

(5 -2 E)-6)

For a nonzero solution, we require that det(A — rI) = r? + 9 = 0. The roots of the
characteristic equation are r = £34¢. Setting r = 3¢, the two equations reduce
to (1—3i)€ +2& =0. The corresponding eigenvector is &€V = (=21 — 3i)T.
Hence one of the complex-valued solutions is given by

-2 ) —2
< = <1 - 32) 3t = <1 B 32') (cos 3t + i sin 3t) =

_ —2 cos 3t 4 —2 sin 3t
"~ \cos 3t + 3 sin 3t —3cos 3t +sin 3t /)"

The general solution is

e —2 cos 3t Lo 2 sin 3t
~ "'\ cos 3t + 3 sin 3t 2\ 3cos 3t —sin 3t )

rrz NN
Pz - NN
tr? - NN
tr NN
111 7 NN
11t 7 NN
11 A v
111 ! N
11118 1 VA
118 3

- 3

R RN PRV L
SRR AN PRV
RN LRV
AN AN Ipiid
RN IR
R Jiidd
NAARINAN Jddd
TANINAN AR
AN N N N Y LA A

8. The eigensystem is obtained from analysis of the equation

—3—r 0 2 & 0
1 —1—r 0 52 =10
-2 -1 —r) \& 0

The characteristic equation of the coefficient matrix is 73 + 472 + 7r +6 = 0, with
roots 1 = —2, 79 = —1—+/2i and r3 = —14 /2 4. Setting r = —2, the equa-
tions reduce to
—§1+2& =0

&1+&=0.
The corresponding eigenvector is 6(1) =(2,-2,1)T. With r=-1- V2'i, the
system of equations is equivalent to

(2-iV2)6 —2&3 =0
&+ Zﬁfg =0.
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An eigenvector is given by 5(2) = (=iv/2,1,—1 —iy/2)T. Hence one of the complex-
valued solutions is given by

—iv2 —iv2
1 e~ (1FiV2)t _ 1
—1—iV2 —1—iV2

—/2 sin V2t —V/2 cos V2t
=et cos V2t + et —sin V2t
—cos V2t —+/2 sin V2t —/2 cos V2t + sin V2t

@ —

e (cos V2t — i sin V2t) =

The other complex-valued solution is x(®) = 5(2) e™t. The general solution is

2
X =c | -2]e %+
1

V2 sin V2t V2 cos V2t
+eget —cos V2t + cqe? sin V2t
cos V2t + /2 sin V2t V2 cos /2t — sin /2t

It is easy to see that all solutions converge to the equilibrium point (0,0,0).

10. Solution of the system of ODEs requires that

(5 2 @)-6)

The characteristic equation is 72 +4r +5 =0, with roots r» = —2 £ i. Substi-
tuting r = —2 + ¢, the equations are equivalent to & — (1 —¢)§3 = 0. The corre-
sponding eigenvector is 5(1) = (1 —14,1)T. One of the complex-valued solutions is

given by
1—i . 1—i
<) — ( ) Z) e(=2+0t _ ( ) Z) e (cos t +isin t) =

_otfcost+sint . _9;f—cost+sint
=e + e . .
cos t sin t

Hence the general solution is

cost+sint —cost+sint
X =C e 2 + +co e 2t . * .
cos t sin t

Invoking the initial conditions, we obtain the system of equations
C1 — Cg = 1
Cc1 = —2.

Solving for the coefficients, the solution of the initial value problem is

cost—+sint —cost—+sint
— _2 —2t _ 3 —2t
x ¢ ( cos ¢ ) N sin ¢

_ 2 cost—5sint
N —2cost—3sint/)’
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The solution converges to (0,0) as t — oo.

12. Solution of the ODEs is based on the analysis of the algebraic equations

(57 2@ -0)

The characteristic equation is 2572 — 107 + 26 = 0, with roots r = 1/5 + i. Set-
ting r = 1/5 + i, the two equations reduce to & — (1 — i)€2 = 0. The correspond-
ing eigenvector is 5(1) = (1 —14,1)T. One of the complex-valued solutions is given

by
<0 _ <1 - Z)e(éﬂ')t - (1 . z) ¢/5(cos t + i sin t) =

_ s cos t+sint 4 et/ —cos.t—&—sint .
cos t sin ¢

Hence the general solution is

X = ¢!/ cos t+sint +epethd — cos .t +sin ¢ -
cos t sin ¢

(b) Let x(0) = (29 ,29)”. The solution of the initial value problem is

t+sint - t+sint
x = a8 et/s(COS + sin )—i—(mg—m?)et/s( cos —i—sm)

cos t sin ¢
0 t 2 0 _ .0V t
_ (i cost+ (2x5 —af)sin
=e .
x9 cos t + (29 — 20)sin ¢

With x(0) = (1,2)7, the solution is

¢/5(cost+3sint
x=e . .
2cost+sint

15 9

10

2

' ' / /7 ' ' '
-15 -10 -5 0 5 10, 15
EY4
-1
=1

5
5

/
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A 50
O 2 a4 & % 1012 1% 16 -20 0 20

13.(a) The characteristic equation is r? — 2ar + 1 + o2 = 0, with roots r = a + i.

(b) When a <0 and « > 0, the equilibrium point (0,0) is a stable spiral and an
unstable spiral, respectively. The equilibrium point is a center when o« = 0.
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(b) a=1/8
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2

14.(a) The roots of the characteristic equation, r* —ar +5 =0, are

«Q 1
==+ =vVa2-20.
1,2 9 B « 0

(b) Note that the roots are complex when —v/20 < a < v/20 . For the case when
a € (=20 ,0), the equilibrium point (0,0) is a stable spiral. On the other hand,
when a € (0,+/20), the equilibrium point is an unstable spiral. For the case o = 0,
the roots are purely imaginary, so the equilibrium point is a center. When a? > 20,
the roots are real and distinct. The equilibrium point becomes a node, with its
stability dependent on the sign of o . Finally, the case o® = 20 marks the transition
from spirals to nodes.

17. The characteristic equation of the coefficient matrix is 72 +2r+1+a =0,
with roots given formally as r; o = —1 + /—a . The roots are real provided that
a < 0. First note that the sum of the roots is —2 and the product of the roots is
1+ «. For negative values of a, the roots are distinct, with one always negative.
When a < —1, the roots have opposite signs. Hence the equilibrium point is a
saddle. For the case —1 < a < 0, the roots are both negative, and the equilibrium
point is a stable node. « = —1 represents a transition from saddle to node. When
a = 0, both roots are equal. For the case a > 0, the roots are complex conjugates,
with negative real part. Hence the equilibrium point is a stable spiral.
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19. The characteristic equation for the system is given by

r? 4+ (4 —a)r +10 — 4a = 0.

r1¢2=—2+% + Va? +8a—24.

First note that the roots are complex when —4 — 2v/10 < a < —4 + 2v/10. We also
find that when —4 —2v/10 < a < —4 + 2v/10, the equilibrium point is a stable
spiral. For a > —4 + 2v/10, the roots are real. When « > 2.5, the roots have
opposite signs, with the equilibrium point being a saddle. For the case —4 +
2V/10 < a < 2.5, the roots are both negative, and the equilibrium point is a stable
node. Finally, when o < —4 — 21/10 , both roots are negative, with the equilibrium
point being a stable node.

The roots are

20. The characteristic equation is 72 4+ 27 — (24 + 8a) = 0, with roots
T2 = -1 £+ vV25+8a .

The roots are complex when a < —25/8. Since the real part is negative, the origin
is a stable spiral. Otherwise the roots are real. When —25/8 < o < —3, both roots
are negative, and hence the equilibrium point is a stable node. For a > —3, the
roots are of opposite sign and the origin is a saddle.
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OO
SOOI
SOOI
SOOI
SOOI

0. A cor-

£ 1" results in

(m@)

(mﬂ)

sin(Int)

sin(In t)
(0,0,1)T. Setting r = —1/4 — i,

cos(Int) + 2 sin

) (51
3
2+ z> b
) [cos(Int) + 4 sin(Int)]
cos(Int) + 2 sin
17
160
(1) _
-0
=0.

The characteristic equation for the system is 72 +1 =0, with roots rys = +i.

With r = i, the equations reduce to the single equation & — (2 + )&
$

-5

24
L8

80"

—2—r
(m0>+@(

Other combinations are also possible.
§&1—1&

(2+1i,1)T. One complex-valued solution is

xu><

241\ ,
X(l) _ ( —1+_Z>ez Int

(b) a = —3.05
(In t)) N Z<

57”

1
1) _
s+

2—r
cos(Int)

(

cos(Int)

2 cos(Int) — sin
2 cos(Int) — sin

(

Therefore the general solution is

C1 (
with eigenvalues r; = 1/10, and ro 3 = —1/4 £ 4. For r = 1/10, simple calculations

24.(a) The characteristic equation of the system is
reveal that a corresponding eigenvector is &

we obtain the system of equations

22. Based on the method in Problem 19 of Section 7.5, setting x
We can write t* = e*™*. Hence

the algebraic equations
responding eigenvector is &
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A corresponding eigenvector is 5(2) = (i,1,0)T. Hence one solution is

0
x = [ 0] /10,

1

Another solution, which is complex-valued, is given by

x@ = [ 1] e Gt = |1 e_t/4(cos t—isint) =
0 0
sin ¢ cos t
—e | cost | +ie | —sint
0 0

Using the real and imaginary parts of x(?), the general solution is constructed as

0 sin ¢ cos t
x=c |0 et/10 4 Co et cost | + c3 et/ [ —sint
1 0 0

(b) Let x(0) = (29,29 ,29). The solution can be written as

0 29 sin t + 29 cos t
X = 0 + et/ x cos t — 2 sin ¢
z9 et/10 0

With x(0) = (1,1,1), the solution of the initial value problem is

0 sin ¢t + cos t
X = 0 +e 4 | cost —sint
et/lO 0

(a) x1 — x2 (b) 21 — 3 (¢) z2 —x3
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25.(a) Based on Problems 19-21 of Section 7.1, the system of differential equations

LD DO-C D0

since Ry = Ry =4 ohms, C = 1/2 farads and L = 8 henrys.

(b) The eigenvalue problem is

(5" ()=l

The characteristic equation of the system is 72 + r + % = 0, with eigenvalues
L + 1
rio=—= 1 —i.
D T

Setting r = —1/2 4 i/2, the algebraic equations reduce to 4i¢; + & = 0. It follows
that € = (1, —44)T. Hence one complex-valued solution is

(Q " (14@‘)6(_1“)”2 - (14)/ [cos(t/2) +i sin(t/2)] =

=) v ()

Therefore the general solution is

(v) = (Fmtern) + o (emie)

(¢) Imposing the initial conditions, we arrive at the equations ¢; =2 and ¢y =

—3/4, and .
()= (Gomters) 4 ot

(d) Since the eigenvalues have negative real parts, all solutions converge to the
origin.



302

Chapter 7. Systems of First Order Linear Equations

26.(a) The characteristic equation of the system is

1 1
1ﬂ+ﬁ6r+azzo,

with eigenvalues

1 1 4R2C

"2 = "ope Tare\ T L
The eigenvalues are real and different provided that
2
1-— AR >0.

The eigenvalues are complex conjugates as long as

4R2C

1 <0.

(b) With the specified values, the eigenvalues are r;2 = —1 £+ 4. The eigenvec-
tor corresponding to r = —1-+1 is e = (1,—44)T. Hence one complex-valued
solution is

(1)
I 1 . 1
(V) - (—1 +i> = (—1 +z‘)€_t(cos Etésint) =

—t cos t - sin ¢
=e A + 1€ A .
—cost— sint cost—sin t

Therefore the general solution is

I ¢ cos t 4ot sin ¢
= cie coe .
Vv ! —cost—sint 2 cost—sin t

(¢) Imposing the initial conditions, we arrive at the equations
C1 = 2
—cte=1,

with ¢; =2 and ¢y = 3. Therefore the solution of the IVP is
1 _ ot 2cost+3sint
V) cost— Hsint )’

(d) Since Re(r1,2) = —1, all solutions converge to the origin.

27.(a) Suppose that cia+cob= 0. Since a and b are the real and imaginary parts
of the vector 5(1) , respectively, a= (5(1) + 5(1))/2 and b= (5(1) — 5(1))/22'. Hence

cr(€V +61) —ico(eV — &) =0,

which leads to -
(Cl — iC2)€(1) + (C1 + iCQ)S(l) =0.
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(b) Now since 5(1) and @ are linearly independent, we must have
c1 —icg =0
c1+ico =0.
It follows that ¢ =c9 =0.
(c) Recall that
u(t) = e*(a cos ut — b sin ut)
v(t) = eM(a cos ut + b sin put).
Consider the equation ciu(ty) + cov(tg) = 0, for some t3. We can then write
c1eMo(a cos ptg — b sin pty) + coe(a cos utg + b sin ptg) = 0. (x)
Rearranging the terms, and dividing by the exponential,
(c1 + ¢a)cos ptpa + (co —¢1) sin utgb =0.
From part (b), since a and b are linearly independent, it follows that
(c1 + ¢2) cos ptg = (ca — ¢1) sin utg = 0.

Without loss of generality, assume that the trigonometric factors are nonzero. Oth-
erwise proceed again from Equation (x), above. We then conclude that

c1+c=0and cg—c; =0,

which leads to ¢; = ¢ = 0. Thus u(ty) and v(to) are linearly independent for some
to, and hence the functions are linearly independent at every point.

28.(a) Let 21 = u and zo = u’. It follows that x{ = z3 and

r_ k
Ty =U =——1u.
m

In terms of the new variables, we obtain the system of two first order ODEs

Xr4 = T2

, k
Ty =——2T1.
2 m

=~

(b) The associated eigenvalue problem is

=T 1 fl _ 0
—k/m —r)\&)  \0)°
The characteristic equation is 7% + k/m = 0, with roots 712 = £i\/k/m .

(c) Since the eigenvalues are purely imaginary, the origin is a center. Hence the
phase curves are ellipses, with a clockwise flow. For computational purposes, let
k=1andm=2.
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(c) 1,22 vs t

(d) The general solution of the second order equation is

k . k
u(t) =crcos /| —t—+casin [ —t.
m m
The general solution of the system of ODEs is given by
4osin %t 4 cos %t
cen (T (T
cos % t —sin % t

It is evident that the natural frequency of the system is equal to |ri| = |ra].

29.(a) Set x= (21,22 )7. We can rewrite Equation (22) in the form
6 o) ()= ) ()
. = 7 .
0 9/4) \ Lz 3 =2 )\,
Multiplying both sides of this equation by the inverse of the diagonal matrix, we
obtain
£)-( %) ()
s /3 =3) \a,
(b) Substituting x= & e,

Q)= B

which can be written as

(A-rD)¢E=0.

(c) The eigenvalues are r? = —1 and r2 = —4, with corresponding eigenvectors

wm_ (3 @ _ (3
o (o= (%)

(d) The linearly independent solutions are

x = C’l <§> et and x® = éQ <_34> et
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in which C; and Cy are arbitrary complex coefficients. In scalar form,
x1 = 3¢y cos t + 3casin t + 3cg cos 2t + 3cy sin 2t
To = 2c1 oS t + 2¢osin t — 4cg cos 2t — 4ey sin 2t

(e) Differentiating the above expressions,

xl’ = —3cysin t 4+ 3co cos t — Geg sin 2t + 6¢4 cos 2t

x5 = —2c1 8in t + 2¢o cos t + 8cg sin 2t — 8¢y cos 2t

It is evident that y= (21,22, 7{,24)T as in Equation (31).

31.(a) The second order system is given by

d*z
dtz1 = —221 + 22
dZ’JJQ
W =T — 21'2
Let y1 = 21, Y2 = 22, y3 = 21 and y4 = x4. In terms of the new variables, we have
yf =Y3
3/2/ =Ya
y:): = —2y1 + 2
Ys =1 — 2y
hence the coefficient matrix is
0 0 1 0
0 0 0 1
A= -2 1 0 0
1 -2 0 0

(b) The eigenvalues and corresponding eigenvectors of A are:
=i, &Y =(1,1,4,9)7
ro = —i, €% =(1,1,—i,—i)"
rs=v3i, €¥=(1,-1,v34,-v34)T
ra=—V3i, €% =(1,-1,-v3i,v3i)T

(c) Note that

eWeit = (cos t+ i sin t)

S S =

and
1
. 1
E®eV3it — J3i (cos V3t 4 i sin V/31).
—V3i
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Hence the general solution is

cos t sin t cos V3t sin V3t
cos t sin t —cos V3t —sin V3¢
—sint T cos t tes —ﬁsin J?Tt +e ﬁcos ﬁt
—sin t cos t V3 sin V3¢ —v/3 cos V3t

(d) The two modes have natural frequencies of w; = 1 rad/sec and wy = /3 rad/sec.

. v \

(e) For the initial condition y(0) = (—1,3,0,0)7, it is necessary that

y=a

~1 1 0 1 0

3 1 0 ~1 0

o | = ol TS| o | T, v3 |}
0 0 1 0 -3

resulting in the coefficients ¢; =1, co =0, c3 = —2 and ¢4 = 0.

3 3

AW (WA
YA A

_3d _3d

The solutions are not periodic, since the two natural frequencies are incommensu-
rate.
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1.(a) The eigenvalues and eigenvectors were found in Problem 1, Section 7.5.

1 2
r = —17 5(1) = (2> ; ro = 2’ 5(2) = (1>

The general solution is
et 2¢e?t
X = Cl(ZBt) +02( o2t )

Hence a fundamental matrix is given by
et 2e%
U(t) = (2 et o2t )
(b) We now have

@(0) = (; f) and W(0) = 3 <‘21 _21) ,

_ 1 [ —e v+ 4% 2e~t — 2%
‘I’(t) = ‘I’(t)‘I’ 1(0) = g (2€t 4 2e2t et — o2t

So that

3.(a) The eigenvalues and eigenvectors were found in Problem 3, Section 7.5. The

general solution of the system is

B et N et
X =C ot Co Je—t .

Hence a fundamental matrix is given by
et et
‘Il(t) - (et 36t> .

(b) Given the initial conditions x(0) =e("), we solve the equations

cpt+co=1
c1 + 302 = 0,
to obtain ¢; =3/2, ¢ = —1/2. The corresponding solution is

Bt _ Lot
_ (2 2
X =17 : .
3t _ 3ot
2 2

Given the initial conditions x(0) =e(?), we solve the equations

Cl+62:O
c1+3c=1,
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to obtain ¢; = —1/2, ¢ = 1/2. The corresponding solution is

1t 1 —t
—5€e + 5€e
x— ( 2 T2 t).
756 + 56
Therefore the fundamental matrix is
1/3t—et —et4et
®(t) = 2 (Set —3e7t et +3e7t)
5.(a) The general solution, found in Problem 3, Section 7.6, is given by

5 cost 5sint
X =0C . + co . .
2cost+sint —cost+2sint

Hence a fundamental matrix is given by

\I'(t):( 5 cost Hsint >

2cost+sint —cost+2sint

(b) Given the initial conditions x(0) =e(!), we solve the equations

56121
201—0220,

resulting in ¢; = 1/5, ¢c; = 2/5. The corresponding solution is

(cos t+ 2 sin t)
X = . )
sin t

Given the initial conditions x(0) =e(?), we solve the equations

561 =0

261 — C2 = 1 s
resulting in ¢; =0, co = —1. The corresponding solution is
—5Hsin ¢
X = ) .
cost—2sint

Therefore the fundamental matrix is
_ [cost+2sint —5sint
o(t) = < sin t cos t — 2 sin t> '
7.(a) The general solution, found in Problem 15, Section 7.5, is given by
o2t olt
X=0C (362t) + c2 <e4t) .

Hence a fundamental matrix is given by

o2t it
Y(t) = (36226 6426) .
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(b) Given the initial conditions x(0) =e"), we solve the equations

c1+co=1
3c1+c2=0,
resulting in ¢; = —1/2, ¢a = 3/2. The corresponding solution is

1 _6215 + 3e4t
X == .
2\ —3e?t + 3ett

The initial conditions x(0) =e(® require that

c1+c=0
301 +co = 1 y
resulting in ¢; = 1/2, ¢co = —1/2. The corresponding solution is

1 e2t _ 64t
) <3th — 64’5)'
Therefore the fundamental matrix is

1 [ —e2t 1 3e4t 2t _ oAt
®(t) = 3 <_362t L 3eMt ge2t _ oAt )

8.(a) The general solution, found in Problem 5, Section 7.6, is given by

X — et cos t 4 et sin ¢
- 2 cost+sint 2 —cost+2sint)’

Hence a fundamental matrix is given by
—t t —t & t
W(t) = , e cosit . B e 'sin n .
2¢e tcost+etsint —e ‘cost+2e sint

(b) The specific solution corresponding to the initial conditions x(0) =e(") is

_;fcost+2sint
X=e . .
5sin t

For the initial conditions x(0) =e(?), the solution is

—t —sin ¢
X=ce . .
cost—2sint

Therefore the fundamental matrix is

_ _4fcost+2sint —sin t
o(t)=e ( 5sin t cost—2sint) "’

9.(a) The general solution, found in Problem 13, Section 7.5, is given by

4e~2t 3e~t 0
x=c1 [ =Be 2| +eo | —de7 | +e5| e
_76—2t —2€_t _62t
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Hence a fundamental matrix is given by

4e”2t et 0
U(t)= [ —be 2t —4et
72 9ot _ g2

(b) Given the initial conditions x(0) =e("), we solve the equations
4cy +3c0 =1
—5¢c1 —4ca +c3=0
—Tc1 —2¢c9g —c3 =0,
resulting in ¢; = —1/2, co = 1, ¢3 = 3/2. The corresponding solution is
—2¢72 4 37t

x = [5e721/2 — de7t + 3e2t)2
Te 2t/2 — 2e~t — 3%t /2

The initial conditions x(0) =e?), we solve the equations
4c1 +3c2 =0
—5c1 —4ecs +c3=1
—Tc1 —2¢c9 —c3 =0,
resulting in ¢; = —1/4, ¢3 =1/3, ¢3 = 13/12. The corresponding solution is
e 4 ot
x = [5e 2 /4 —4e7t/3 + 132! /12
Te 2t/4 —2e71/3 — 132! /12
The initial conditions x(0) =e(®), we solve the equations
4e1 + 3¢9 =0
—5¢1 —4ca +c3=0
—Tc1 —2c9 —c3 =1,
resulting in ¢; = —1/4, ¢3 =1/3, ¢3 = 1/12. The corresponding solution is
—e~2t 4 ot
x = | be 2 /4 —det/3 + ¥ /12
Te 21 /4 —2e71/3 — €2 /12
Therefore the fundamental matrix is

] —24e~2t 4 36e~¢ —12e72t 4 12¢~¢ —12¢72% 4 12¢7¢
®(t) = D 30e72t —48e™t + 182! 15672t — 16e~! + 13e?*  15e72! — 16e~! + e*
42¢72% — 24e7t — 18e%*  2le 2t — 8¢t — 13e2t  2le % — 8¢t — 2

12. The solution of the initial value problem is given by

x = B(1)x(0) = (e‘tcos 2t —2e~tsin 2t> (3> _

%e‘tsin 2t e tcos 2t 1

4 (3 cos 2t — 2sin 2t)

% sin 2t + cos 2t
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13. Let
RO IR RN ()
U(t) = : :
P () M (¢)
It follows that
2V(te) o 2 (ko)
W(ty) = : :
2D (to) - 2 (to)

is a scalar matrix, which is invertible, since the solutions are linearly independent.
Let ¥~ '(to) = (ci;). Then

./L'gl) (t) e :L-gn) (t) C11 ce- Clp
THE (o) = | : : :
xg)(t) - x%n)(t) Cnl "' Cnn

The j-th column of the product matrix is
[T (t0)]Y = > ey x®,
k=1

which is a solution vector, since it is a linear combination of solutions. Furthermore,
the columns are all linearly independent, since the vectors x(*) are. Hence the
product is a fundamental matrix. Finally, setting t = to, ¥ (to)® ' (to) =I. This
is precisely the definition of ®(t).

14. The fundamental matrix ®(t) for the system

, (11
X—41X

1 /263 42t 3t —et
o(t) = 4 <4e3t —4et 2e3t 4 2e7?

is given by

Direct multiplication results in

1 26325 + 2671& 63t _ 67t 2633 + 2675 635 _ 675
(I’(t)é(s) - E <4€3t _ 4€7t 2€3t + 26715 4635 — 4e—5 2635 + 2¢~5
B 1 8(63t+33 + e—t—s) 4(e3t+3s _ e—t—s)
- 16 16(e3t+3s _ eftfs) 8(63t+3s + eftfs)
Hence

1 263(t+s) T 26—(t+s) 63(t+s) _ e—(t+s)
@(t)q)(s) = Z <463(t+s) _ 46—(t+s) 263(t+5) 4 26—(t+s) = (I)(t + S)'
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15.(a) Let s be arbitrary, but fixed, and t variable. Similar to the argument in
Problem 13, the columns of the matrix ®(¢)®(s) are linear combinations of funda-
mental solutions. Hence the columns of ®(¢)®(s) are also solution of the system of
equations. Further, setting t =0, ®(0)®(s) =I®(s) = ®(s). That is, ®(t)P(s)
is a solution of the initial value problem Z' =AZ, with Z(0) = ®(s). Now consider
the change of variable 7 =t+s. Let W(7) =Z(7 — s). The given initial value
problem can be reformulated as

diw = AW , with W (s) = ®(s).
-

Since ®(t) is a fundamental matrix satisfying ®' =A® , with ®(0) =I, it follows
that
W(r) = [®8(r)® ' (s)] ®(s) = B(7).

That is, ®(t + s) = ®(1) =W (1) =Z(t) = ()P (s).
(b) Based on part (a), ®(t)®(—t) = ®(t + (—t)) = ®(0) =L Hence ®(—t) = &' (t).
(c¢) Tt also follows that ®(t —s) = ®(t + (—s)) = B(t)®(—5) = B(t)P'(s).

16. Let A be a diagonal matrix, with A= [ale(l),age(z), e ,ane(”)]. Note that
for any positive integer k,

AF = [abe® ake® ... ok e(n)} ,

It follows, from basic matrix algebra, that

kk
210 12' 0 ) 0
tk 0 moakl .. 0
I+ZA’“ R=0T2 R
0 0 e Y oak

It can be shown that the partial sums on the left hand side converge for all t.
Taking the limit as m — oo on both sides of the equation, we obtain

et 0 ... 0

0 emt ... 0
oAt _

0 0 .- eont

Alternatively, consider the system x’ =Ax . Since the ODEs are uncoupled, the
vectors xU) = e%tel)) j=1,2,--.n, are a set of linearly independent solutions.

Hence the matrix
X = [ealte<1>7ea2te<2>7... ,eantem)}

is a fundamental matrix. Finally, since X(0) =I, it follows that

{ealteu)’eazte(z)’ - 7eante<n>] — (1) = At
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17.(a) Let 21 = u and x9 = u’; then u” = x5 . In terms of the new variables, we
have

z) +wir; =0
with the initial conditions z1(0) = ug and 22(0) = vo. The equivalent first order

system is

/

x1:x2

I _ 2
Ty = —wW" T

which can be expressed in the form

() = (2 o) () (28)-():

(b) Setting

it is easy to show that
A? = 0?1, A® = —w? A and A* =L

It follows inductively that
A% = (Z1)h?t ]

and
AL = (C1)ky2k A
Hence
o0 2k 42k 2k 12k+1
At rwt pwt
= 1) —TI+(-1) —- A
¢ kz::o [< o T OY g ]
o0 2k 42k 1 [& W2k $2k+1
= e I+~ k-
S e

and therefore

1
e = cos witl + = sin wtA.
w

(¢) From Equation (28),
1
(ml) = {cos wtl 4+ — sin th] <u0>
L2 w Vo
1
cos wt (u()) + —sinwt < UQO > .
Vo w —W” Up

18.(a) Assuming that x= ¢(t) is a solution, then ¢’ =A¢, with ¢(0) =x. Integrate
both sides of the equation to obtain

o(t) — ¢(0) = /0 Ad(s)ds .
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Hence .
o(t) =x° +/ Ap(s)ds.
0
(b) Proceed with the iteration
t
oV (t) = x° —|—/ A (s)ds.
0
With ¢(©)(t) =x°, and noting that A is a constant matrix,
t
oW (t) =x" + / Ax%ds = x" + Ax"t.
0
That is, ¢(M(¢) = (I+ At)x°.
(c) We then have
t t2 t2
pP(t) =x" + / AT+ At)x%ds = x° + Ax"t + A2x05 = (I+ At + A%)XO.
0
Now suppose that
t2 t"
O(1) = T+ At + A% 4o A",

It follows that

n

t 2
t t
/ A(I+At+A2§ +o+ AT )xds =
0

n!

t2 2t3 tn+1 0

=At+A—+A"— 4+ - -+ A"——
(It + 2+ 3!+ + (n+1)!)x

t2 3 tn

_ 2" 3t n+1l \ 0

= (At + AP+ AT AT

Therefore ) L

S (1) = (T+ At + A2 .o A e )x°.

2 (n+1)!

By induction, the asserted form of ¢(™(t) is valid for all n > 0.

(d) Define ¢(*°)(t) = lim,, ;o0 (™ (). Tt can be shown that the limit does exist. In
fact,
¢ (t) = eAx".

Term-by-term differentiation results in

d¢<°°>(t) d(I+At+A2t2+ LAty )x°
— = — J— e J— e )X
dt dt 2 n!

n—1
P 2 DR ni ... O
—(A+A%+...+A I )X

tn—l
(n—1)!

2
:A(IJrAtJrAQ%+---+A”‘1 + )"



315

N

That is,
d
— ) (t) = Ap™ (1).
707 (1) = AeU(t)

Furthermore, ¢(°)(0) =x°. Based on uniqueness of solutions, ¢(t) = ¢(>)(t).

s
s
4
s
s
s
4
s
s
4
s
s
s
4
s
s
4
4

AR SN RN NN N NN NN NN
AN NN NN NN\ (AN N NN N NN NN
A NN NN NN RSN N NN
PR YRR N LNN WSS RSN N NN
AN YA Y YR NS N YN
NN N N N N N N RN N N N W N N N N

O R §

(b) All of the points on the line 25 = 2x; are equilibrium points. Solutions starting
at all other points become unbounded.

(c) Setting x= £t" results in the algebraic equations

(5 2)@)=6)

The characteristic equation is 72 = 0, with the single root r = 0. Substituting r» = 0
reduces the system of equations to 2¢; — &5 = 0. Therefore the only eigenvector is

&= (1,2)". One solution is
1
1) —
<= ()

which is a constant vector. In order to generate a second linearly independent
solution, we must search for a generalized eigenvector. This leads to the system of

equations
4 =2 my (1

This system also reduces to a single equation, 2, —ny = 1/2. Setting 71 =k,
some arbitrary constant, we obtain 7o = 2k — 1/2. A second solution is

- (s () (e ()2
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Note that the last term is a multiple of x(!) and may be dropped. Hence

= (o) ()

The general solution is

o
s
o
o o
-
-~
o
e
A
.
rg
s
-
-
-
-
-
-
-
-

(b) All trajectories converge to the origin.

(c) Solution of the ODE requires analysis of the algebraic equations

(522 (0)-6)

For a nonzero solution, we must have det(A —rI) =72 +r+1/4=0. The only
root is r = —1/2, which is an eigenvalue of multiplicity two. Setting r = —1/2
is the coefficient matrix reduces the system to the single equation —&; 4+ & =0.
Hence the corresponding eigenvector is € = (1,1)7. One solution is

1
xD = <1> e 2,
In order to obtain a second linearly independent solution, we find a solution of the
system
-5/2 5/2\ (m\ _ (1
=5/2 5/2) \n,) \1)°

There equations reduce to —5m; + 5172 = 2. Set 1 = k, some arbitrary constant.
Then 1o = k+2/5. A second solution is

1 k 1 0 1
@ _ —t/2 —t/2 _ —t/2 —t/2 —t/2
X (1>te +(k+2/5>€ (1)te +(2/5>e —l—k(l)e .

Dropping the last term, the general solution is

I gy I — 0\ ¢
X—Cl<1>€ +co [(1>te + 2/5 e .
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6. The eigensystem is obtained from analysis of the equation

-r 1 1 51 0
1 =T 1 52 =1{0
1 1 -r 53 0
The characteristic equation of the coefficient matrix is 73 — 3r — 2 = 0, with roots
r1 =2 and ro3 = —1. Setting r = 2, we have
-2 1 1 & 0
1 -2 1 &Ll =10
1 1 =2 &3 0

This system is reduced to the equations
& -8 =0
& —&=0.

A corresponding eigenvector is given by E(l) =(1,1,1)T. Setting » = —1, the
system of equations is reduced to the single equation

§1+8&+86=0.
An eigenvector vector is given by 5(2) =(1,0,—1)T. Since the last equation has two
free variables, a third linearly independent eigenvector (associated with r = —1) is
® = (0,1,—1)T. Therefore the general solution may be written as
1 1 0
x=c |1 +c| 0 e t+es| 1 |et
1 -1 -1

7.(a) Solution of the ODE requires analysis of the algebraic equations

(2 ) E)-6)

For a nonzero solution, we must have det(A —rI) =72 +6r+9 =0. The only
root is 7 = —3, which is an eigenvalue of multiplicity two. Substituting r = —3
into the coefficient matrix, the system reduces to the single equation & — & =0.
Hence the corresponding eigenvector is & = (1,1)”. One solution is

x( = <1) e 3t
1

For a second linearly independent solution, we search for a generalized eigenvector.

Its components satisfy
4 -4\ (m) (1
4 —4 72 “\1)

that is, 4 —4ne = 1. Let 1o = k, some arbitrary constant. Then 7, = k+ 1/4.
It follows that a second solution is given by

1\ _ kE+1/4\ _ 1\ _ 1/4\ _ 1\ _
(2 _ 3t 3t _ 3t 3t 3t
X <1>te +( 1 )e (1>te +( 0 )e +k<1)e .
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Dropping the last term, the general solution is

X=c G) e 3+ ey Ki)te?’t + <1é4> e3t] :

Imposing the initial conditions, we require that ¢; 4+ ¢2/4 = 3, ¢; = 2, which results
in ¢; =2 and ¢y = 4. Therefore the solution of the IVP is

; 4 .
X = (2) e 3 + <4> te 3.

x/

|
L
~

8.(a) Solution of the ODEs is based on the analysis of the algebraic equations

(7420 ()-6)

The characteristic equation is 72 + 27 + 1 = 0, with a single root 7 = —1. Setting
r = —1, the two equations reduce to —¢; + &2 = 0. The corresponding eigenvector

is € = (1,1)T. One solution is
x) = <1)et.
1

A second linearly independent solution is obtained by solving the system

(e 5) (e =)

The equations reduce to the single equation —3n; + 372 = 2. Let 5; = k. We obtain
72 = 2/3 + k, and a second linearly independent solution is

x® = <Dtet + (2/3k+ k) et = G)tet + (233) et + k(i) et

Dropping the last term, the general solution is

cma()ere e (2]
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Imposing the initial conditions, we find that ¢; = 3, ¢; + 2¢2/3 = —1, sothat ¢; =3
and ¢y = —6. Therefore the solution of the IVP is

() (e

x/

10.(a) The eigensystem is obtained from analysis of the equation

(o Lm)e)=6)

The characteristic equation is r?> = 0, with a single root r =0. Setting r =0,
the two equations reduce to & + 362 = 0. The corresponding eigenvector is & =
(—3,1)”. Hence one solution is
-3
o-(3)
1

which is a constant vector. A second linearly independent solution is obtained from

the system
3 9 m\ (-3

The equations reduce to the single equation 71 + 312 = —1. Let 172 = k. We obtain
m = —1 — 3k, and a second linearly independent solution is

-3 —1-3k -3 -1 -3
<= () C07) = () () ++(F)
Dropping the last term, the general solution is
X=c -3 +c -3 t+ -1
— M\ 1\ 0/]

Imposing the initial conditions, we require that —3c; — ¢ = 2, ¢; = 4, which results
in ¢ =4 and c¢p = —14. Therefore the solution of the IVP is

<= (1) ()
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60

13. Setting x= £ t" results in the algebraic equations

() @)=

The characteristic equation is % — 2r + 1 = 0, with a single root of r1 » = 1. With
r = 1, the system reduces to a single equation & — 2 &, = 0. An eigenvector is given
by &€ = (2,1)T. Hence one solution is

x) = <2> t.
1

In order to find a second linearly independent solution, we search for a generalized
eigenvector whose components satisfy

(=) G)-0)

These equations reduce to 1y —2m2 = 1. Let 72 =k, some arbitrary constant.
Then n; =14 2k. (Before proceeding, note that if we set u = Int, the original
equation is transformed into a constant coefficient equation with independent vari-
able u. Recall that a second solution is obtained by multiplication of the first
solution by the factor w. This implies that we must multiply first solution by a
factor of Int.) Hence a second linearly independent solution is

2 1+ 2k 2 1 2
(2 — —
X (l)tlnt+< 1 >t <1>t1nt+(0>t+k<1)t.

Dropping the last term, the general solution is

oo e ()]

16.(a) Using the result in Problem 15, the eigenvalues are
1 Y L2 —4R?CL
2RC 2RCL '

The discriminant vanishes when L = 4R2C.

T12 = —
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(b) The system of differential equations is
d(ry_(o 3 I
dt\v) \-1 —1)\v /)’

The associated eigenvalue problem is

—r % & _ 0
-1 —1-7)\& 0)

The characteristic equation is 72 +r +1/4 = 0, with a single root of ry 5 = —1/2.
Setting r = —1/2, the algebraic equations reduce to 2§ + & = 0. An eigenvector
is given by & = (1,—2)7. Hence one solution is

0" ()

A second solution is obtained from a generalized eigenvector whose components

satisfy
1
GG -)
-1 —=3) \nm -2

It follows that 7, = k and 1y = 4 — 2k . A second linearly independent solution is

nN® /1 , k 1 0 1
_ —t/2 —t/2 _ —t/2 —t/2 —t/2
(V) (_2>te +<4_2k)e (_Q)te +<4)e —|—k<_2>e .

Dropping the last term, the general solution is

(v) o) (e (]

Imposing the initial conditions, we require that ¢; = 1, —2¢; + 4¢o = 2, which re-
sults in ¢; =1 and ¢y = 1. Therefore the solution of the IVP is

(-

19.(a) The eigensystem is obtained from analysis of the equation

5—-r -3 -2\ /& 0
8 —5-r —4|[&]=10
—4 3 3-1r) \& 0

The characteristic equation of the coefficient matrix is 7% — 3r2 4 3r — 1 = 0, with
a single root of multiplicity three, » = 1. Setting r = 1, we have

4 -3 -2\ /& 0
8 —6 —4|[&] =10
-4 3 2] \g 0

The system of algebraic equations reduces to a single equation

461 — 38 — 263 =0.
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An eigenvector vector is given by 5(1) = (1,0,2)T. Since the last equation has two
free variables, a second linearly independent eigenvector (associated with r = 1) is
£ = (0,2, —-3)T. Therefore two solutions are obtained as

1 0
xW = [0]ef andx® = | 2 | €.
2 -3

(b) It follows directly that x’ = &tet + et + met. Hence the coefficient vectors
must satisfy &te? + €ef + net =A&te’+Ane’. Rearranging the terms, we have

ge! = (A —TI)&te' + (A —TI)ne.
Given an eigenvector £, it follows that (A —I)6 =0 and (A —I)n=¢€.

(c) Clearly, (A —1)’n=(A-I)(A-I)n=(A-1)¢ =0. Also,

4 -3 =2 4 -3 =2 0 0 0
8§ —6 —4 8§ —6 —4]1=10 0 0
-4 3 2 -4 3 2 0 0 O
(d) We get that
4 -3 =2 0 —2
E=A-I)'n=|(8 -6 —4 0]l=1-4
-4 3 2 1 2
This is an eigenvector:
5 -3 -2 -2 -2
8§ -5 —4 —4|=|-4
-4 3 3 2 2

(e) Given the three linearly independent solutions, a fundamental matrix is given
by
et 0 —2tet
Uty=[ 0 2¢ —4t et
2et —3et 2tef et

(f) We construct the transformation matrix

1 -2 0
T=|0 -4 0],
2 2 1
with inverse
1 —1/2 0
T'=10 -1/4 0
-2 3/2 1

The Jordan form of the matrix A is

1 00
J=T'AT=(0 1 1
0 0 1
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21.(a) Direct multiplication results in

XMoo 0 Moo oo Moo oo
J2=10 X 22,3 =0 X 3X2], 3¢ =0 A 4\
0 0 A 0 0 X 0 0 M

(b) Suppose that

A" 0 0
J'=10 M piv!
0 0 A"
Then
A"0 0 A0 O AN 0 0
Jtl=1( 0 X ni! 0 X 1]= 0 A-A" A" 4 nh - AL
0 0 A" 0 0 X 0 0 A A"

Hence the result follows by mathematical induction.

(c) Note that J is block diagonal. Hence each block may be exponentiated. Using
the result in Problem 20,

er 0 0
eJt _ 0 eAt te)\t
0 0 eM

(d) Setting A = 1, and using the transformation matrix T in Problem 19,

1 2 0 et 0 0 et 2 2t et
T =0 4 0 0 e tet|] =0 4 4t et
2 -2 -1 0 0 €t 2et —2e! —2tel —et

Based on the form of J, e7? is the fundamental matrix associated with the solutions
y(l) — 5(1)et7y(2) — (25(1) + 26(2))615 and y(3) — (25(1) + 25(2))tet + n@t~

Hence the resulting matrix is the fundamental matrix associated with the solution
set

{€Wet (26 4 26@)et, (260 + 26D )te’ + e},
as opposed to the solution set in Problem 19, given by

{€Wet €@et, (26 + 26 e’ +me'}.

22.(a) Direct multiplication results in
A22) 1 A3 3A% 0 3A AL 4N 62
FP=(0 A 22|, =0 A 33|, J=[0 M 43
0 0 ) 0 0 A 0 0 A
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N

(b) Suppose that
— 71,(71—1) n—2
A" pAnTl =5 A"

J'=10 A” nAn1
0 0 A”
Then
A7 n)\nfl n(n;l) >\n72 A1 0
Jn+1 — 0 AT n/\n—l 0 XN 1
0 0 A" 0 0 X
XA AT AL AnTl gl g )y e
= 0 A-A" A" ) ATt
0 0 A"

The result follows by noting that

nin —1)
2

nA" 4 AT = [n—l— _ ——— "L

(c) We first observe that

o0 t"
Z A — e/\t
n=0 Tl'
oo t o tn—l
n—1 _ n—1 _ At
Z")‘ nu_tz)‘ (n—1)! t
n=20 n=1
i ’I’L(’I’L 1) n—2ﬁ_ t2 i n—2 tn72 t2 At
Y —_9 9
= 2 nl 2 = (n—2) 2
Therefore
A et t2€)\t
eJt — 0 et teMt
0 0 eM

(d) Setting A = 2, and using the transformation matrix T in Problem 18,

0 1 2 e Ta— %6% 0 et t2€2t + 2¢%
Te''=| 1 1 0) [0 e e | =€ te*+e* Le+te?
-1 0 3 0 0 et —e2t —te2t —%ezt + 3e?t

5. As shown in Problem 2, Section 7.8, the general solution of the homogeneous

equation is
1 n t
X, =¢C c .
o) "7\ -1
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An associated fundamental matrix is

T = G ztt— ;) '

The inverse of the fundamental matrix is easily determined as

Lo (4t—3 —2t+2
)= <8t—8 —4t+5)'

We can now compute

T (1)g(t) 1 (2t2+4t— 1)7

3\ —2t—4
and _ )
_ —=t7* + 4t —2Int
7 = 2 :
[ oema = (7,000
Finally,
v(t) = w(o) [ @ 0s(t)at,
where

1
v (t) = —iﬂ +2t7t —21Int -2, vo(t) =5t —4nt—4.

Note that the vector (2,4)7 is a multiple of one of the fundamental solutions.
Hence we can write the general solution as

o) ealal ) -4(2) 1) -2 )

6. The eigenvalues of the coefficient matrix are r1 =0 and ro = —5. It follows
that the solution of the homogeneous equation is

1 —2e5t
X, =C 9 =+ Cco o5t .

The coefficient matrix is symmetric. Hence the system is diagonalizable. Using the
normalized eigenvectors as columns, the transformation matrix, and its inverse, are

0 ()

Setting x=Ty, and h(t) =T ~'g(t), the transformed system is given, in scalar form,

as
, 548t

yli\/gt

4
Yo = —By2 + —=.

V5

The solutions are readily obtained as

8 4
)=vV5Int+ —t+c; and ) =coe Pt — .
y1() \/5 1 yz() 2 5\/5
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Transforming back to the original variables, we have x=T'y, with

[ RN

Hence the general solution is

() k(Y e (N (Ve (2
X =M 9 2\ et 2) M52 AGNA

7. The solution of the homogeneous equation is

eft egt
X, =C (—2e_t) + c2 <2€3t> .

Based on the simple form of the right hand side, we use the method of undetermined
coefficients. Set v=ae!. Substitution into the ODE yields

ar\ , (1 1\ (a1 , 2\
()=o) G (B)
In scalar form, after canceling the exponential, we have

ap=ay t+as+2
as =4a1 +as — 1,

with a; = 1/4 and as = —2. Hence the particular solution is

1/4\
so that the general solution is

et e3t 1/ et
X = ge-t te 2e3t +i —8et )’

9. Note that the coefficient matrix is symmetric. Hence the system is diagonalizable.
The eigenvalues and eigenvectors are given by

1 1 1
T = R 5(1) = <1) and ro = —2 5(2) = (_1>~

Using the normalized eigenvectors as columns, the transformation matrix, and its

inverse, are
1 /1 1 1 /1 1
5004 -0 )

Setting x=Ty, and h(t) =T~!g(t), the transformed system is given, in scalar form,
as
yi = —ly VR et
1 2 1 \/i
1
ys = —2yp + V2t — —=¢'.

V2
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Using any elementary method for first order linear equations, the solutions are

2
yi(t) = ke /2 + %et —4V2 +2V/2t

1 1 1
Y2 (t) = kge_zt

-+ —=t.
3V2 2V/2 V2

Transforming back to the original variables, x=TYy, the general solution is

A LN\ L, 117\ 1(5\  1(1),
X_Cl(1>e +C2(1)€ i\us) T2l)! Tels)

10. Since the coefficient matrix is symmetric, the differential equations can be
decoupled. The eigenvalues and eigenvectors are given by

r=-4, f(l) = <\/f> and 7o = -1, 5(2) = (\}5)

Using the normalized eigenvectors as columns, the transformation matrix, and its

B I V]

Setting x=Ty, and h(t) =T~ !g(t), the transformed system is given, in scalar form,
as

The solutions are easily obtained as

—4t 1 —t _ —t L _ et
yl(t):kle4+3—\/§(1+\@)e , ya2(t) = koe +\/§(1 V2)te .

Transforming back to the original variables, the general solution is

(el s e

2 2+3V3 2 2 1
+V243VBY (242 . e .

36 —-v2-1 —V2-1 V2
The second vector is an eigenvector, hence the solution may be written as

N N e

11. Based on the solution of Problem 3 of Section 7.6, a fundamental matrix is
given by

Note that

5 cost 5sint
T(t) = <2005t+sint —cost+2sint>'
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The inverse of the fundamental matrix is easily determined as

1 (cost—QSint 5sin t )

1 _
v (t)_5 2cost+sint —bHcost

It follows that

—cos?t

wﬁwaw=(

Lsin?t
U (tg(t)dt = 2 .
/ (De(t) (1 cos t sin t — ét)

2

cos t sin t>
)

and

A particular solution is constructed as

v@=ww/w*waww

where

5 . , 5 , 1, 1
vl(t)zacostsmt—cost+§t+1, vg(t):cost51nt—§cos t+t+§.

Hence the general solution is

5cost " 5sint
X =c c —
! 2cost +sint 2 —cost+2sint

et () et () s (7).

13.(a) As shown in Problem 25 of Section 7.6, the solution of the homogeneous

system is
(L) = (mtim) <o ()

Therefore the associated fundamental matrix is given by

. cos(t/2 sin(t/2
T(t)=c (4 Sié(i{/Q)) —4 cés/(t}2)> '

(b) The inverse of the fundamental matrix is

o) = et/? <4 cos(t/2)  sin(t/2) ) .

4 \4sin(t/2) —cos(t/2)

It follows that

T (g(t) = % (E?ﬁg@) ’

[ omta= (20 00)

A particular solution is constructed as

V()= %) [ 9 0(0) dr

and
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where vy (t) = 0, vo(t) = 4e~*/2. Hence the general solution is

20D ey S0 Y e (0)

Imposing the initial conditions, we require that ¢; = 0, —4cy + 4 = 0, which results
in ¢4 =0 and ¢y = 1. Therefore the solution of the IVP is

x=e"2 (4 Sixn((;i/siz/m)'

15. The general solution of the homogeneous problem is

(c)
T\ I\, .1 2\ o
(o) =) +eeD)

which can be verified by substitution into the system of ODEs. Since the vectors
are linearly independent, a fundamental matrix is given by

t=t 22
\Il(t) = <2t_1 t2 > '
The inverse of the fundamental matrix is
_ 1/ —¢ 2t
1 = —
Dividing both equations by ¢, we obtain

g(t) = (t?, _2t_1>-

Proceeding with the method of variation of parameters,

2,4 2 2
2404242
T (Delt) — 3 30— 3 7
(e (_;t_;t—u;t—s

/wl@gwﬁ< éﬁ+$%ﬁt).

149 441 1,9
—s2+ 5t -3t

and

Hence a particular solution is obtained as

<—;t4 + 3t — 1)
v=1| ", e
Lt 42t —3
The general solution is

o) 1 O ()

16. Based on the hypotheses,
o'(t) = P()o(t) + g(t) and v'(t) = POV (1) +g(t)

Subtracting the two equations results in

¢'(t) = v'(t) =P()d(t) - P(t)v(t),
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that is,
[(t) = v()])" =P(#) [o(t) —v(t)].

It follows that ¢(t)—v(t) is a solution of the homogeneous equation. According to
Theorem 7.4.2,

P(t) —v(t) = arxV(t) + c2x@ () + - - - 4 c,x™(1).
Hence
o(t) =u(t) +v(t),

in which u(t) is the general solution of the homogeneous problem.

17.(a) Setting tp = 0 in Equation (34),

t

x = B()x" +¢(t)/0 &1 (s)g(s)ds = B(1)x" +A B()® " (s)g(s)ds.

It was shown in Problem 15(c) in Section 7.7 that ®(t)® '(s) = ®(t — s). There-
fore

¢
x = ®(t)x" + / P(t — s)g(s)ds.
0
(b) The principal fundamental matrix is identified as ®(t) = eA?. Hence

¢
x = eAx0 + / A=) g(s)ds .
0

In Problem 27 of Section 3.6, the particular solution is given as

y(t) = | K(t - s)g(s)ds,

to

in which the kernel K (¢) depends on the nature of the fundamental solutions.

18. Similarly to Eq.(43), here
(ﬂ—MX@zG@+(”)
Qs

where

G(s) = (2/éj;1)> and  sI— A = <5f12 5112) .

The transfer matrix is given by Eq.(46):

-1 1 s+2 1
A = g (1 et

From these equations we obtain that

2(s+2) 3 a1 (s+2) ey
X(s) = | CT2G) + 26 T oo T G 6T
2 + 3(s+2) + o + as(s+2 .
(s+1)2(s+3) s2(s+1)(s+3) (s+1)(s+3) (s+1)(s+3)
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The inverse Laplace transform gives us that

4+a§+a2 e—t + —4+30é1—3oz2 €—3t Lt te—t _ 4
X(t) = 24+ai1tas  —t 4—3a1+3as ,—3t —t g )
SRR e T 4 2 + 2t + te 3

so ap and ag should be chosen so that

4 —4 4307 — 3

L LL N P L
This gives us ag = (=5 + 6¢1 + 6¢2)/6 and as = —cy + ¢o — 13/6.
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