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C H A P T E R

7

Systems of First Order Linear

Equations

7.1

1. Introduce the variables x1 = u and x2 = u ′. It follows that x ′1 = x2 and

x ′2 = u ′′ = −2u− 0.5u ′.

In terms of the new variables, we obtain the system of two first order ODEs

x ′1 = x2

x ′2 = −2x1 − 0.5x2 .

3. First divide both sides of the equation by t2, and write

u ′′ = −1

t
u ′ − (1− 1

4t2
)u .

Set x1 = u and x2 = u ′. It follows that x ′1 = x2 and

x ′2 = u ′′ = −1

t
u ′ − (1− 1

4t2
)u .

We obtain the system of equations

x ′1 = x2

x ′2 = −(1− 1

4t2
)x1 −

1

t
x2 .



254 Chapter 7. Systems of First Order Linear Equations

5. Let x1 = u and x2 = u ′; then u ′′ = x′2 . In terms of the new variables, we have

x′2 + 0.25x2 + 4x1 = 2 cos 3t

with the initial conditions x1(0) = 1 and x2(0) = −2 . The equivalent first order
system is

x′1 = x2

x′2 = −4x1 − 0.25x2 + 2 cos 3t

with the above initial conditions.

7.(a) Solving the first equation for x2 , we have x2 = x ′1 + 2x1 . Substitution into
the second equation results in (x ′1 + 2x1)′ = x1 − 2(x ′1 + 2x1). That is, x ′′1 + 4x ′1 +
3x1 = 0 . The resulting equation is a second order differential equation with con-
stant coefficients. The general solution is x1(t) = c1e

−t + c2e
−3t. With x2 given

in terms of x1 , it follows that x2(t) = c1e
−t − c2e−3t.

(b) Imposing the specified initial conditions, we obtain

c1 + c2 = 2, c1 − c2 = 3,

with solution c1 = 5/2 and c2 = −1/2 . Hence

x1(t) =
5

2
e−t − 1

2
e−3t and x2(t) =

5

2
e−t +

1

2
e−3t .

(c)

10.(a) Solving the first equation for x2 , we obtain x2 = (x1 − x ′1)/2 . Substitution
into the second equation results in (x1 − x ′1)′/2 = 3x1 − 2(x1 − x ′1). Rearranging
the terms, the single differential equation for x1 is x ′′1 + 3x ′1 + 2x1 = 0.

(b) The general solution is x1(t) = c1e
−t + c2e

−2t. With x2 given in terms of x1 ,
it follows that x2(t) = c1e

−t + 3c2e
−2t /2. Invoking the specified initial conditions,

c1 = −7 and c2 = 6 . Hence

x1(t) = −7e−t + 6 e−2t and x2(t) = −7e−t + 9 e−2t .
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(c)

11.(a) Solving the first equation for x2 , we have x2 = x ′1/2 . Substitution into the
second equation results in x ′′1 /2 = −2x1. The resulting equation is x ′′1 + 4x1 = 0 .

(b) The general solution is x1(t) = c1 cos 2t+ c2 sin 2t. With x2 given in terms
of x1 , it follows that x2(t) = −c1 sin 2t+ c2 cos 2t. Imposing the specified initial
conditions, we obtain c1 = 3 and c2 = 4 . Hence

x1(t) = 3 cos 2t+ 4 sin 2t and x2(t) = −3 sin 2t+ 4 cos 2t .

(c)

13. Solving the first equation for V , we obtain V = L · I ′. Substitution into the
second equation results in

L · I ′′ = − I
C
− L

RC
I ′ .

Rearranging the terms, the single differential equation for I is

LRC · I ′′ + L · I ′ +R · I = 0 .

15. Let x = c1x1(t) + c2x2(t) and y = c1y1(t) + c2y2(t). Then

x′ = c1x
′
1(t) + c2x

′
2(t)

y′ = c1y
′
1(t) + c2y

′
2(t).
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Since x1(t), y1(t) and x2(t), y2(t) are solutions for the original system,

x′ = c1(p11x1(t) + p12y1(t)) + c2(p11x2(t) + p12y2(t))

y′ = c1(p21x1(t) + p22y1(t)) + c2(p21x2(t) + p22y2(t)).

Rearranging terms gives

x′ = p11(c1x1(t) + c2x2(t)) + p12(c1y1(t) + c2y2(t))

y′ = p21(c1x1(t) + c2x2(t)) + p22(c1y1(t) + c2y2(t)),

and so x and y solve the original system.

16. Based on the hypothesis,

x ′1(t) = p11(t)x1(t) + p12(t)y1(t) + g1(t)

x ′2(t) = p11(t)x2(t) + p12(t)y2(t) + g1(t) .

Subtracting the two equations,

x ′1(t)− x ′2(t) = p11(t) [x ′1(t)− x ′2(t)] + p12(t) [y ′1(t)− y ′2(t)] .

Similarly,

y ′1(t)− y ′2(t) = p21(t) [x ′1(t)− x ′2(t)] + p22(t) [y ′1(t)− y ′2(t)] .

Hence the difference of the two solutions satisfies the homogeneous ODE.

17. For rectilinear motion in one dimension, Newton’s second law can be stated as∑
F = mx ′′.

The resisting force exerted by a linear spring is given by Fs = k δ , in which δ is
the displacement of the end of a spring from its equilibrium configuration. Hence,
with 0 < x1 < x2 , the first two springs are in tension, and the last spring is in
compression. The sum of the spring forces on m1 is

F 1
s = −k1x1 − k2(x2 − x1) .

The total force on m1 is∑
F 1 = −k1x1 + k2(x2 − x1) + F1(t) .

Similarly, the total force on m2 is∑
F 2 = −k2(x2 − x1)− k3x2 + F2(t) .

18. One of the ways to transform the system is to assign the variables

y1 = x1, y2 = x2, y3 = x′1, y4 = x ′2.

Before proceeding, note that

x ′′1 =
1

m1
[−(k1 + k2)x1 + k2x2 + F1(t)]

x ′′2 =
1

m2
[k2x1 − (k2 + k3)x2 + F2(t)] .
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Differentiating the new variables, we obtain the system of four first order equations

y ′1 = y3

y ′2 = y4

y ′3 =
1

m1
(−(k1 + k2)y1 + k2y2 + F1(t))

y ′4 =
1

m2
(k2y1 − (k2 + k3)y2 + F2(t)) .

19.(a) Taking a clockwise loop around each of the paths, it is easy to see that
voltage drops are given by V1 − V2 = 0 , and V2 − V3 = 0 .

(b) Consider the right node. The current in is given by I1 + I2 . The current leaving
the node is −I3 . Hence the current passing through the node is (I1 + I2)− (−I3).
Based on Kirchhoff’s first law, I1 + I2 + I3 = 0 .

(c) In the capacitor,
C V ′1 = I1.

In the resistor,
V2 = RI2 .

In the inductor,
LI ′3 = V3 .

(d) Based on part (a), V3 = V2 = V1. Based on part (b),

C V ′1 +
1

R
V2 + I3 = 0 .

It follows that

C V ′1 = − 1

R
V1 − I3 and LI ′3 = V1.

21. Let I1, I2, I3,and I4 be the current through the resistors, inductor, and capac-
itor, respectively. Assign V1, V2, V3,and V4 as the respective voltage drops. Based
on Kirchhoff’s second law, the net voltage drops, around each loop, satisfy

V1 + V3 + V4 = 0, V1 + V3 + V2 = 0 and V4 − V2 = 0 .

Applying Kirchhoff’s first law to the upper-right node,

I3 − (I2 + I4) = 0 .

Likewise, in the remaining nodes,

I1 − I3 = 0 and I2 + I4 − I1 = 0 .

That is,

V4 − V2 = 0, V1 + V3 + V4 = 0 and I2 + I4 − I3 = 0 .

Using the current-voltage relations,

V1 = R1I1, V2 = R2I2, L I ′3 = V3, C V ′4 = I4.
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Combining these equations,

R1I3 + LI ′3 + V4 = 0 and C V ′4 = I3 −
V4

R2
.

Now set I3 = I and V4 = V , to obtain the system of equations

LI ′ = −R1I − V and C V ′ = I − V

R2
.

23.(a)

Let Q1(t) and Q2(t) be the amount of salt in the respective tanks at time t . Note
that the volume of each tank remains constant. Based on conservation of mass, the
rate of increase of salt, in any given tank, is given by

rate of increase = rate in − rate out.

The rate of salt flowing into Tank 1 is

rin =

[
q1

oz

gal

] [
3

gal

min

]
+

[
Q2

100

oz

gal

] [
1

gal

min

]
= 3 q1 +

Q2

100

oz

min
.

The rate at which salt flows out of Tank 1 is

rout =

[
Q1

60

oz

gal

] [
4

gal

min

]
=
Q1

15

oz

min
.

Hence
dQ1

dt
= 3 q1 +

Q2

100
− Q1

15
.

Similarly, for Tank 2,
dQ2

dt
= q2 +

Q1

30
− 3Q2

100
.

The process is modeled by the system of equations

Q ′1 = −Q1

15
+
Q2

100
+ 3 q1

Q ′2 =
Q1

30
− 3Q2

100
+ q2 .

The initial conditions are Q1(0) = Q0
1 and Q2(0) = Q0

2 .
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(b) The equilibrium values are obtained by solving the system

−Q1

15
+
Q2

100
+ 3 q1 = 0

Q1

30
− 3Q2

100
+ q2 = 0 .

Its solution leads to QE1 = 54 q1 + 6 q2 and QE2 = 60 q1 + 40 q2 .

(c) The question refers to a possible solution of the system

54 q1 + 6 q2 = 60

60 q1 + 40 q2 = 50 .

It is possible to formally solve the system of equations, but the unique solution
gives

q1 =
7

6

oz

gal
and q2 = −1

2

oz

gal
,

which is not physically possible.

(d) We can write

q2 = −9 q1 +
QE1
6

q2 = −3

2
q1 +

QE2
40

,

which are the equations of two lines in the q1-q2-plane:

The intercepts of the first line are QE1 /54 and QE1 /6 . The intercepts of the second
line are QE2 /60 and QE2 /40 . Therefore the system will have a unique solution, in
the first quadrant, as long as QE1 /54 ≤ QE2 /60 or QE2 /40 ≤ QE1 /6 . That is,

10

9
≤ QE2
QE1
≤ 20

3
.
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7.2

2.(a)

A− 2 B =

(
1 + i− 2i −1 + 2i− 6
3 + 2i− 4 2− i+ 4i

)
=

(
1− i −7 + 2i
−1 + 2i 2 + 3i

)
.

(b)

3 A + B =

(
3 + 3i+ i −3 + 6i+ 3
9 + 6i+ 2 6− 3i− 2i

)
=

(
3 + 4i 6i
11 + 6i 6− 5i

)
.

(c)

AB =

(
(1 + i)i+ 2(−1 + 2i) 3(1 + i) + (−1 + 2i)(−2i)
(3 + 2i)i+ 2(2− i) 3(3 + 2i) + (2− i)(−2i)

)
=

(
−3 + 5i 7 + 5i

2 + i 7 + 2i

)
.

(d)

BA =

(
(1 + i)i+ 3(3 + 2i) (−1 + 2i)i+ 3(2− i)

2(1 + i) + (−2i)(3 + 2i) 2(−1 + 2i) + (−2i)(2− i)

)
=

(
8 + 7i 4− 4i
6− 4i −4

)
.

3.(c,d)

AT + BT =

−2 1 2
1 0 −1
2 −3 1

+

1 3 −2
2 −1 1
3 −1 0


=

−1 4 0
3 −1 0
5 −4 1

 = (A + B)T .

4.(b)

A =

(
3 + 2i 1− i
2 + i −2− 3i

)
.

(c) By definition,

A∗ = AT = (A)T =

(
3 + 2i 2 + i
1− i −2− 3i

)
.

5.

2(A + B) = 2

5 3 −2
0 2 5
2 2 3

 =

10 6 −4
0 4 10
4 4 6

 .

7. Let A= (aij) and B= (bij) . The given operations in (a)-(d) are performed
elementwise. That is,

(a) aij + bij = bij + aij .
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(b) aij + (bij + cij) = (aij + bij) + cij .

(c) α(aij + bij) = αaij + α bij .

(d) (α+ β) aij = αaij + β aij .

In the following, let A= (aij) , B= (bij) and C= (cij) .

(e) Calculating the generic element,

(BC)ij =
n∑
k=1

bik ckj .

Therefore

[A(BC)]ij =

n∑
r=1

air(

n∑
k=1

brk ckj) =

n∑
r=1

n∑
k=1

air brk ckj =

n∑
k=1

(

n∑
r=1

air brk) ckj .

The inner summation is recognized as

n∑
r=1

air brk = (AB)ik ,

which is the ik-th element of the matrix AB. Thus [A(BC)]ij = [(AB)C]ij .

(f) Likewise,

[A(B + C)]ij =

n∑
k=1

aik( bkj + ckj) =

n∑
k=1

aik bkj +

n∑
k=1

aik ckj = (AB)ij + (AC)ij .

8.(a) xTy= 2(−1 + i) + 2(3i) + (1− i)(3− i) = 4i .

(b) yTy= (−1 + i)2 + 22 + (3− i)2 = 12− 8i .

(c) (x,y) = 2(−1− i) + 2(3i) + (1− i)(3 + i) = 2 + 2i .

(d) (y,y) = (−1 + i)(−1− i) + 22 + (3− i)(3 + i) = 16 .

9. Indeed,

5 + 3i = xTy =

n∑
j=1

xj yj = yTx ,

and

3− 5i = (x,y) =

n∑
j=1

xj yj =

n∑
j=1

yj xj =

n∑
j=1

yj xj = (y,x).
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11. First augment the given matrix by the identity matrix:

[A | I ] =

(
3 −1 1 0
6 2 0 1

)
.

Divide the first row by 3 , to obtain(
1 −1/3 1/3 0
6 2 0 1

)
.

Adding −6 times the first row to the second row results in(
1 −1/3 1/3 0
0 4 −2 1

)
.

Divide the second row by 4 , to obtain(
1 −1/3 1/3 0
0 1 −1/2 1/4

)
.

Finally, adding 1/3 times the second row to the first row results in(
1 0 1/6 1/12
0 1 −1/2 1/4

)
.

Hence (
3 −1
6 2

)−1

=
1

12

(
2 1
−6 3

)
.

13. The augmented matrix is1 1 −1 1 0 0
2 −1 1 0 1 0
1 1 2 0 0 1

 .

Combining the elements of the first row with the elements of the second and third
rows results in 1 1 −1 1 0 0

0 −3 3 −2 1 0
0 0 3 −1 0 1

 .

Divide the elements of the second row by −3 , and the elements of the third row
by 3 . Now subtracting the new second row from the first row yields1 0 0 1/3 1/3 0

0 1 −1 2/3 −1/3 0
0 0 1 −1/3 0 1/3

 .

Finally, combine the third row with the second row to obtain1 0 0 1/3 1/3 0
0 1 0 1/3 −1/3 1/3
0 0 1 −1/3 0 1/3

 .
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Hence 1 1 −1
2 −1 1
1 1 2

−1

=
1

3

 1 1 0
1 −1 1
−1 0 1

 .

15. Elementary row operations yield2 1 0 1 0 0
0 2 1 0 1 0
0 0 2 0 0 1

→
1 1/2 0 1/2 0 0

0 1 1/2 0 1/2 0
0 0 1 0 0 1/2

→
1 0 −1/4 1/2 −1/4 0

0 1 0 0 1/2 −1/4
0 0 1 0 0 1/2

→
1 0 −1/4 1/2 −1/4 0

0 1 0 0 1/2 −1/4
0 0 1 0 0 1/2

 .

Finally, combining the first and third rows results in1 0 0 1/2 −1/4 1/8
0 1 0 0 1/2 −1/4
0 0 1 0 0 1/2

 , so A−1 =

1/2 −1/4 1/8
0 1/2 −1/4
0 0 1/2

 .

16. Elementary row operations yield1 −1 −1 1 0 0
2 1 0 0 1 0
3 −2 1 0 0 1

→
1 −1 −1 1 0 0

0 3 2 −2 1 0
0 1 4 −3 0 1

→
1 0 −1/3 1/3 1/3 0

0 1 2/3 −2/3 1/3 0
0 0 10/3 −7/3 −1/3 1

→
1 0 0 1/10 3/10 1/10

0 1 0 −1/5 2/5 −1/5
0 0 10/3 −7/3 −1/3 1

 .

Finally, normalizing the last row results in1 0 0 1/10 3/10 1/10
0 1 0 −1/5 2/5 −1/5
0 0 1 −7/10 −1/10 3/10

 , so A−1 =

 1/10 3/10 1/10
−1/5 2/5 −1/5
−7/10 −1/10 3/10

 .

17. Elementary row operations on the augmented matrix yield the row-reduced
form of the augmented matrix1 0 −1/7 0 1/7 2/7

0 1 3/7 0 4/7 1/7
0 0 0 1 −2 −1

 .

The left submatrix cannot be converted to the identity matrix. Hence the given
matrix is singular.
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18. Elementary row operations on the augmented matrix yield
1 0 0 −1 1 0 0 0
0 −1 1 0 0 1 0 0
−1 0 1 0 0 0 1 0
0 1 −1 1 0 0 0 1

→


1 0 0 −1 1 0 0 0
0 −1 1 0 0 1 0 0
0 0 1 −1 1 0 1 0
0 1 −1 1 0 0 0 1

→


1 0 0 −1 1 0 0 0
0 1 −1 0 0 −1 0 0
0 0 1 −1 1 0 1 0
0 0 0 1 0 1 0 1

→


1 0 0 0 1 1 0 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 1 1
0 0 0 1 0 1 0 1

 ,

so

A−1 =


1 1 0 1
1 0 1 1
1 1 1 1
0 1 0 1

 .

19. Elementary row operations on the augmented matrix yield
1 −1 2 0 1 0 0 0
−1 2 −4 2 0 1 0 0
1 0 1 3 0 0 1 0
−2 2 0 −1 0 0 0 1

→


1 −1 2 0 1 0 0 0
0 1 −2 2 1 1 0 0
0 1 −1 3 −1 0 1 0
0 0 4 −1 2 0 0 1

→


1 0 0 2 2 1 0 0
0 1 −2 2 1 1 0 0
0 0 1 1 −2 −1 1 0
0 0 4 −1 2 0 0 1

→


1 0 0 2 2 1 0 0
0 1 0 4 −3 −1 2 0
0 0 1 1 −2 −1 1 0
0 0 0 −5 10 4 −4 1

 .

Normalizing the last row and combining it with the others results in
1 0 0 2 2 1 0 0
0 1 0 4 −3 −1 2 0
0 0 1 1 −2 −1 1 0
0 0 0 1 −2 −4/5 4/5 −1/5

→


1 0 0 0 6 13/5 −8/5 2/5
0 1 0 0 5 11/5 −6/5 4/5
0 0 1 0 0 −1/5 1/5 1/5
0 0 0 1 −2 −4/5 4/5 −1/5

 ,

so

A−1 =


6 13/5 −8/5 2/5
5 11/5 −6/5 4/5
0 −1/5 1/5 1/5
−2 −4/5 4/5 −1/5

 .

20. Suppose that there exist matrices B and C, such that AB = I and CA = I .
Then CAB = IB = B, also, CAB = CI = C. This shows that B = C.

23. First note that

x ′ =

(
1
0

)
et + 2

(
1
1

)
(et + t et) =

(
3et + 2t et

2et + 2t et

)
.
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We also have (
2 −1
3 −2

)
x =

(
2 −1
3 −2

)(
1
0

)
et +

(
2 −1
3 −2

)(
2
2

)
(t et)

=

(
2
3

)
et +

(
2
2

)
(t et) =

(
2et + 2t et

3et + 2t et

)
.

It follows that (
2 −1
3 −2

)
x +

(
1
−1

)
et =

(
3et + 2t et

2et + 2t et

)
.

24. It is easy to see that

x ′ =

−6
8
4

 e−t +

 0
4
−4

 e2t =

 −6e−t

8e−t + 4e2t

4e−t − 4e−2t

 .

On the other hand,1 1 1
2 1 −1
0 −1 1

x =

1 1 1
2 1 −1
0 −1 1

 6
−8
−4

 e−t +

1 1 1
2 1 −1
0 −1 1

 0
2
−2

 e2t

=

−6
8
4

 e−t +

 0
4
−4

 e2t .

26. Differentiation, elementwise, results in

Ψ ′ =

 et −2e−2t 3e3t

−4et 2e−2t 6e3t

−et 2e−2t 3e3t

 .

On the other hand,1 −1 4
3 2 −1
2 1 −1

Ψ =

1 −1 4
3 2 −1
2 1 −1

 et e−2t e3t

−4et −e−2t 2e3t

−et −e−2t e3t


=

 et −2e−2t 3e3t

−4et 2e−2t 6e3t

−et 2e−2t 3e3t

 .

7.3

4. The augmented matrix is 1 2 −1 | 0
2 1 1 | 0
1 −1 2 | 0

 .
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Adding −2 times the first row to the second row and subtracting the first row from
the third row results in 1 2 −1 | 0

0 −3 3 | 0
0 −3 3 | 0

 .

Adding the negative of the second row to the third row results in1 2 −1 | 0
0 −3 3 | 0
0 0 0 | 0

 .

We evidently end up with an equivalent system of equations

x1 + 2x2 − x3 = 0

−x2 + x3 = 0 .

Since there is no unique solution, let x3 = α , where α is arbitrary. It follows that
x2 = α , and x1 = −α . Hence all solutions have the form

x = α

−1
1
1

 .

5. The augmented matrix is  1 0 −1 | 0
3 1 1 | 0
−1 1 2 | 0

 .

Adding −3 times the first row to the second row and adding the first row to the
last row yields 1 0 −1 | 0

0 1 3 | 0
0 1 1 | 0

 .

Now add the negative of the second row to the third row to obtain1 0 −1 | 0
0 1 3 | 0
0 0 −2 | 0

 .

We end up with an equivalent linear system

x1 − x3 = 0

x2 + 3x3 = 0

x3 = 0 .

Hence the unique solution of the given system of equations is x1 = x2 = x3 = 0 .

6. The augmented matrix is 1 2 −1 | −2
−2 −4 2 | 4
2 4 −2 | −4

 .
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Adding 2 times the first row to the second row and subtracting 2 times the first
row from the third row results in1 2 −1 | −2

0 0 0 | 0
0 0 0 | 0

 .

We evidently end up with an equivalent system of equations

x1 + 2x2 − x3 = −2.

Since there is no unique solution, let x2 = α , and x3 = β, where α, β are arbitrary.
It follows that x1 = −2− 2α+ β . Hence all solutions have the form

x =

−2− 2α+ β
α
β

 .

8. Write the given vectors as columns of the matrix

X =

2 0 −1
1 1 2
0 0 0

 .

It is evident that det(X) = 0. Hence the vectors are linearly dependent. In order
to find a linear relationship between them, write c1x

(1) + c2x
(2) + c3x

(3) = 0 . The
latter equation is equivalent to2 0 −1

1 1 2
0 0 0

c1c2
c3

 =

0
0
0

 .

Performing elementary row operations,2 0 −1 | 0
1 1 2 | 0
0 0 0 | 0

→
1 0 −1/2 | 0

0 1 5/2 | 0
0 0 0 | 0

 .

We obtain the system of equations

c1 − c3/2 = 0

c2 + 5c3/2 = 0 .

Setting c3 = 2 , it follows that c1 = 1 and c3 = −5 . Hence

x(1) − 5x(2) + 2x(3) = 0 .

10. The matrix containing the given vectors as columns is

X =


1 2 −1 3
2 3 0 −1
−1 1 2 1
0 −1 2 3

 .

We find that det(X) = −70. Hence the given vectors are linearly independent.
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11. Write the given vectors as columns of the matrix

X =

 1 3 2 4
2 1 −1 3
−2 0 1 −2

 .

The four vectors are necessarily linearly dependent. Hence there are nonzero scalars
such that c1x

(1) + c2x
(2) + c3x

(3) + c4x
(4) = 0 . The latter equation is equivalent

to  1 3 2 4
2 1 −1 3
−2 0 1 −2



c1
c2
c3
c4

 =

0
0
0

 .

Performing elementary row operations, 1 3 2 4 | 0
2 1 −1 3 | 0
−2 0 1 −2 | 0

→
1 0 0 1 | 0

0 1 0 1 | 0
0 0 1 0 | 0

 .

We end up with an equivalent linear system

c1 + c4 = 0

c2 + c4 = 0

c3 = 0 .

Let c4 = −1 . Then c1 = 1 and c2 = 1 . Therefore we find that

x(1) + x(2) − x(4) = 0 .

12. The matrix containing the given vectors as columns, X, is of size n×m . Since
n < m, we can augment the matrix with m− n rows of zeros. The resulting matrix,
X̃, is of size m×m . Since X̃ is a square matrix, with at least one row of zeros,
it follows that det(X̃) = 0. Hence the column vectors of X̃ are linearly dependent.
That is, there is a nonzero vector, c, such that X̃c= 0m×1 . If we write only the first
n rows of the latter equation, we have Xc= 0n×1 . Therefore the column vectors of
X are linearly dependent.

13. By inspection, we find that

x(1)(t)− 2x(2)(t) =

(
−e−t

0

)
.

Hence 3 x(1)(t)− 6 x(2)(t)+x(3)(t) = 0 , and the vectors are linearly dependent.

17. The eigenvalues λ and eigenvectors x satisfy the equation(
3− λ −2

4 −1− λ

)(
x1

x2

)
=

(
0

0

)
.

For a nonzero solution, we must have (3− λ)(−1− λ) + 8 = 0 , that is,

λ2 − 2λ+ 5 = 0 .
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The eigenvalues are λ1 = 1− 2 i and λ2 = 1 + 2 i . The components of the eigen-
vector x(1) are solutions of the system(

2 + 2 i −2
4 −2 + 2 i

)(
x1

x2

)
=

(
0

0

)
.

The two equations reduce to (1 + i)x1 = x2 . Hence x(1) = (1 , 1 + i)T . Now setting
λ = λ2 = 1 + 2 i , we have(

2− 2 i −2
4 −2− 2 i

)(
x1

x2

)
=

(
0

0

)
,

with solution given by x(2) = (1 , 1− i)T .

18. The eigenvalues λ and eigenvectors x satisfy the equation(
−2− λ 1

1 −2− λ

)(
x1

x2

)
=

(
0

0

)
.

For a nonzero solution, we must have (−2− λ)(−2− λ)− 1 = 0 , that is,

λ2 + 4λ+ 3 = 0 .

The eigenvalues are λ1 = −3 and λ2 = −1 . For λ1 = −3 , the system of equations
becomes (

1 1
1 1

)(
x1

x2

)
=

(
0

0

)
,

which reduces to x1 + x2 = 0 . A solution vector is given by x(1) = (1 ,−1)T . Sub-
stituting λ = λ2 = −1 , we have(

−1 1
1 −1

)(
x1

x2

)
=

(
0

0

)
.

The equations reduce to x1 = x2 . Hence a solution vector is given by x(2) = (1 , 1)T .

20. The eigensystem is obtained from analysis of the equation(
1− λ

√
3√

3 −1− λ

)(
x1

x2

)
=

(
0

0

)
.

For a nonzero solution, the determinant of the coefficient matrix must be zero.
That is,

λ2 − 4 = 0 .

Hence the eigenvalues are λ1 = −2 and λ2 = 2 . Substituting the first eigenvalue,
λ = −2 , yields (

3
√

3√
3 1

)(
x1

x2

)
=

(
0

0

)
.

The system is equivalent to the equation
√

3 x1 + x2 = 0 . A solution vector is
given by x(1) = (1 ,−

√
3 )T . Substitution of λ = 2 results in(

−1
√

3√
3 −3

)(
x1

x2

)
=

(
0

0

)
,
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which reduces to x1 =
√

3 x2 . A corresponding solution vector is x(2) = (
√

3 , 1)T .

21. The eigenvalues λ and eigenvectors x satisfy the equation(
−3− λ 3/4
−5 1− λ

)(
x1

x2

)
=

(
0

0

)
.

For a nonzero solution, we must have (−3− λ)(1− λ) + 15/4 = 0 , that is,

λ2 + 2λ+ 3/4 = 0 .

Hence the eigenvalues are λ1 = −3/2 and λ2 = −1/2 . In order to determine the
eigenvector corresponding to λ1 , set λ = −3/2 . The system of equations becomes(

−3/2 3/4
−5 5/2

)(
x1

x2

)
=

(
0

0

)
,

which reduces to −2x1 + x2 = 0 . A solution vector is given by x(1) = (1 , 2)T .
Substitution of λ = λ2 = −1/2 results in(

−5/2 3/4
−5 3/2

)(
x1

x2

)
=

(
0

0

)
,

which reduces to 10x1 = 3x2 . A corresponding solution vector is x(2) = (3 , 10)T .

23. The eigensystem is obtained from analysis of the equation3− λ 2 2
1 4− λ 1
−2 −4 −1− λ

x1

x2

x3

 =

0
0
0

 .

The characteristic equation of the coefficient matrix is λ3 − 6λ2 + 11λ− 6 = 0 ,
with roots λ1 = 1 , λ2 = 2 and λ3 = 3 . Setting λ = λ1 = 1 , we have 2 2 2

1 3 1
−2 −4 −2

x1

x2

x3

 =

0
0
0

 .

This system is reduces to the equations

x1 + x3 = 0

x2 = 0 .

A corresponding solution vector is given by x(1) = (1 , 0 ,−1)T . Setting λ = λ2 = 2 ,
the reduced system of equations is

x1 + 2x2 = 0

x3 = 0 .

A corresponding solution vector is given by x(2) = (−2 , 1 , 0)T . Finally, setting
λ = λ3 = 3 , the reduced system of equations is

x1 = 0

x2 + x3 = 0 .

A corresponding solution vector is given by x(3) = (0 , 1 ,−1)T .
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24. For computational purposes, note that if λ is an eigenvalue of B, then c λ is
an eigenvalue of the matrix A= cB . Eigenvectors are unaffected, since they are
only determined up to a scalar multiple. So with

B =

11 −2 8
−2 2 10
8 10 5

 ,

the associated characteristic equation is µ3 − 18µ2 − 81µ+ 1458 = 0 , with roots
µ1 = −9 , µ2 = 9 and µ3 = 18 . Hence the eigenvalues of the given matrix, A, are
λ1 = −1 , λ2 = 1 and λ3 = 2 . Setting λ = λ1 = −1 , (which corresponds to using
µ1 = −9 in the modified problem) the reduced system of equations is

2x1 + x3 = 0

x2 + x3 = 0 .

A corresponding solution vector is given by x(1) = (1 , 2 ,−2)T . Setting λ = λ2 = 1 ,
the reduced system of equations is

x1 + 2x3 = 0

x2 − 2x3 = 0 .

A corresponding solution vector is given by x(2) = (2 ,−2 ,−1)T . Finally, setting
λ = λ2 = 1 , the reduced system of equations is

x1 − x3 = 0

2x2 − x3 = 0 .

A corresponding solution vector is given by x(3) = (2 , 1 , 2)T .

26.(b) By definition,

(Ax ,y) =
n∑

i= 0

(Ax)i yi =

n∑
i= 0

n∑
j= 0

aij xj yi .

Let bij = aji , so that aij = bji . Now interchanging the order or summation,

(Ax ,y) =

n∑
j= 0

xj

n∑
i= 0

aij yi =

n∑
j= 0

xj

n∑
i= 0

bji yi .

Now note that
n∑

i= 0

bji yi =

n∑
i= 0

bji yi = (A∗y)j .

Therefore

(Ax ,y) =

n∑
j= 0

xj (A∗y)j = (x ,A∗y) .

(c) By definition of a Hermitian matrix, A=A∗.
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27. Suppose that Ax= 0 , but that x6= 0 . Let A= (aij). Using elementary row
operations, it is possible to transform the matrix into one that is not upper trian-
gular. If it were upper triangular, backsubstitution would imply that x= 0 . Hence
a linear combination of all the rows results in a row containing only zeros. That
is, there are n scalars, βi , one for each row and not all zero, such that for each for
column j ,

n∑
i= 1

βi aij = 0 .

Now consider A∗ = (bij). By definition, bij = aji , or aij = bji . It follows that for
each j ,

n∑
i= 1

βi bji =

n∑
k= 1

bjk βk =

n∑
k= 1

bjk βk = 0 .

Let y= (β1, β2, · · · , βn)T . Hence we have a nonzero vector, y, such that A∗y= 0 .

29. By linearity,

A(x(0) + α ξ) = Ax(0) + αAξ = b + 0 = b .

30. Let cij = aji . By the hypothesis, there is a nonzero vector, y, such that

n∑
j= 1

cij yj =

n∑
j= 1

aji yj = 0 , i = 1, 2, · · · , n .

Taking the conjugate of both sides, and interchanging the indices, we have

n∑
i= 1

aij yi = 0 .

This implies that a linear combination of each row of A is equal to zero. Now
consider the augmented matrix [A |B]. Replace the last row by

n∑
i= 1

yi [ai1 , ai2 , · · · , ain , bi] =

[
0 , 0 , · · · , 0 ,

n∑
i= 1

yi bi

]
.

We find that if (B ,y) = 0, then the last row of the augmented matrix contains only
zeros. Hence there are n− 1 remaining equations. We can now set xn = α , some
parameter, and solve for the other variables in terms of α . Therefore the system
of equations Ax=b has a solution.

31. If λ = 0 is an eigenvalue of A, then there is a nonzero vector, x, such that

Ax = λx = 0 .

That is, Ax= 0 has a nonzero solution. This implies that the mapping defined
by A is not 1-to-1, and hence not invertible. On the other hand, if A is singular,
then det(A) = 0. Thus, Ax= 0 has a nonzero solution. The latter equation can
be written as Ax= 0 x.
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32.(a) Based on Problem 26, (Ax ,x) = (x ,Ax) .

(b) Let x be an eigenvector corresponding to an eigenvalue λ . It then follows that
(Ax ,x) = (λx ,x) and (x ,Ax) = (x , λx) . Based on the properties of the inner
product, (λx ,x) = λ(x ,x) and (x , λx) = λ(x ,x) . Then from part (a),

λ(x ,x) = λ(x ,x) .

(c) From part (b),

(λ− λ)(x ,x) = 0 .

Based on the definition of an eigenvector, (x ,x) = ‖x‖2 > 0 . Hence we must have
λ− λ = 0 , which implies that λ is real.

33. From Problem 26(c),

(Ax(1) ,x(2)) = (x(1) ,Ax(2)) .

Hence

λ1(x(1) ,x(2)) = λ2(x(1) ,x(2)) = λ2(x(1) ,x(2)) ,

since the eigenvalues are real. Therefore

(λ1 − λ2)(x(1) ,x(2)) = 0 .

Given that λ1 6= λ2 , we must have (x(1) ,x(2)) = 0 .

7.4

3. Equation (14) states that the Wronskian satisfies the first order linear ODE

dW

dt
= (p11 + p22 + · · ·+ pnn)W.

The general solution of this is given by Equation (15):

W (t) = C e
∫

(p11+p22+···+pnn)dt ,

in which C is an arbitrary constant. Let X1 and X2 be matrices representing two
sets of fundamental solutions. It follows that

det(X1) = W1(t) = C1e
∫

(p11+p22+···+pnn)dt

det(X2) = W2(t) = C2e
∫

(p11+p22+···+pnn)dt .

Hence det(X1)/det(X2) = C1/C2 . Note that C2 6= 0.

4. First note that p11 + p22 = −p(t). As shown in Problem 3,

W
[
x(1) ,x(2)

]
= c e−

∫
p(t)dt.
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For second order linear ODE, the Wronskian (as defined in Chapter 3) satisfies the
first order differential equation W ′ + p(t)W = 0 . It follows that

W
[
y(1) ,y(2)

]
= c1 e

−
∫
p(t)dt.

Alternatively, based on the hypothesis,

y(1) = α11 x11 + α12 x12

y(2) = α21 x11 + α22 x12 .

Direct calculation shows that

W
[
y(1) ,y(2)

]
=

∣∣∣∣α11 x11 + α12 x12 α21 x11 + α22 x12

α11 x
′
11 + α12 x

′
12 α21 x

′
11 + α22 x

′
12

∣∣∣∣
= (α11α22 − α12α21)x11x

′
12 − (α11α22 − α12α21)x12x

′
11

= (α11α22 − α12α21)x11x22 − (α11α22 − α12α21)x12x21 .

Here we used the fact that x′1 = x2 . Hence

W
[
y(1) ,y(2)

]
= (α11α22 − α12α21)W

[
x(1) ,x(2)

]
.

5. The particular solution satisfies the ODE (x(p))′ =P(t)x(p)+g(t) . Now let x
be any solution of the homogeneous equation, x′ =P(t)x . We know that x=x(c),
in which x(c) is a linear combination of some fundamental solution. By linearity
of the differential equation, it follows that x =x(p)+x(c) is a solution of the ODE.
Based on the uniqueness theorem, all solutions must have this form.

7.(a) By definition,

W
[
x(1) ,x(2)

]
=

∣∣∣∣t2 et

2t et

∣∣∣∣ = (t2 − 2t)et.

(b) The Wronskian vanishes at t0 = 0 and t0 = 2 . Hence the vectors are linearly
independent on D = (−∞ , 0) ∪ (0 , 2) ∪ (2 ,∞).

(c) It follows from Theorem 7.4.3 that one or more of the coefficients of the ODE
must be discontinuous at t0 = 0 and t0 = 2 . If not, the Wronskian would not
vanish.

(d) Let

x = c1

(
t2

2t

)
+ c2

(
et

et

)
.

Then

x ′ = c1

(
2t

2

)
+ c2

(
et

et

)
.
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On the other hand,(
p11 p12

p21 p22

)
x = c1

(
p11 p12

p21 p22

)(
t2

2t

)
+ c2

(
p11 p12

p21 p22

)(
et

et

)
=

(
c1
[
p11t

2 + 2p12t
]

+ c2 [p11 + p12] et

c1 [p21t2 + 2p22t] + c2 [p21 + p22] et

)
.

Comparing coefficients, we find that

p11t
2 + 2p12t = 2t

p11 + p12 = 1

p21t
2 + 2p22t = 2

p21 + p22 = 1 .

Solution of this system of equations results in

p11(t) = 0, p12(t) = 1, p21(t) =
2− 2t

t2 − 2t
, p22(t) =

t2 − 2

t2 − 2t
.

Hence the vectors are solutions of the ODE

x ′ =
1

t2 − 2t

(
0 t2 − 2t

2− 2t t2 − 2

)
x .

8. Suppose that the solutions x(1), x(2),· · · , x(m) are linearly dependent at t = t0 .
Then there are constants c1 , c2, · · · , cm (not all zero) such that

c1x
(1)(t0) + c2x

(2)(t0) + · · ·+ cmx(m)(t0) = 0 .

Now let z(t) = c1x
(1)(t) + c2x

(2)(t) + · · ·+ cmx(m)(t) . Then clearly, z(t) is a solu-
tion of x ′ =P(t)x, with z(t0) = 0 . Furthermore, y(t) ≡ 0 is also a solution, with
y(t0) = 0 . By the uniqueness theorem, z(t) =y(t) = 0 . Hence

c1x
(1)(t) + c2x

(2)(t) + · · ·+ cmx(m)(t) = 0

on the entire interval α < t < β . Going in the other direction is trivial.

9.(a) Let y(t) be any solution of x ′ =P(t)x. It follows that

z(t) + y(t) = c1x
(1)(t) + c2x

(2)(t) + · · ·+ cnx(n)(t) + y(t)

is also a solution. Now let t0 ∈ (α , β) . Then the collection of vectors

x(1)(t0),x(2)(t0), . . . ,x(n)(t0), y(t0)

constitutes n+ 1 vectors, each with n components. Based on the assertion in
Problem 12, Section 7.3, these vectors are necessarily linearly dependent. That is,
there are n+ 1 constants b1, b2, . . . , bn, bn+1 (not all zero) such that

b1x
(1)(t0) + b2x

(2)(t0) + · · ·+ bnx(n)(t0) + bn+1 y(t0) = 0 .

From Problem 8, we have

b1x
(1)(t) + b2x

(2)(t) + · · ·+ bnx(n)(t) + bn+1 y(t) = 0
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for all t ∈ (α , β). Now bn+1 6= 0 , otherwise that would contradict the fact that the
first n vectors are linearly independent. Hence

y(t) = − 1

bn+1
(b1x

(1)(t) + b2x
(2)(t) + · · ·+ bnx(n)(t)),

and the assertion is true.

(b) Consider z(t) = c1x
(1)(t) + c2 x(2)(t) + · · ·+ cn x(n)(t), and suppose that we

also have
z(t) = k1x

(1)(t) + k2x
(2)(t) + · · ·+ knx(n)(t) .

Based on the assumption,

(k1 − c1)x(1)(t) + (k2 − c2)x(2)(t) + · · ·+ (kn − cn)x(n)(t) = 0 .

The collection of vectors

x(1)(t),x(2)(t), . . . ,x(n)(t)

is linearly independent on α < t < β . It follows that ki − ci = 0 , for i = 1, 2, · · · , n .

7.5

2.(a) Setting x= ξ ert, and substituting into the ODE, we obtain the algebraic
equations (

1− r −2
3 −4− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we must have det(A− rI) = r2 + 3r + 2 = 0 . The roots of
the characteristic equation are r1 = −1 and r2 = −2. For r = −1, the two equations
reduce to ξ1 = ξ2. The corresponding eigenvector is ξ(1) = (1, 1)T . Substitution of
r = −2 results in the single equation 3ξ1 = 2ξ2. A corresponding eigenvector is
ξ(2) = (2, 3)T . Since the eigenvalues are distinct, the general solution is

x = c1

(
1

1

)
e−t + c2

(
2

3

)
e−2t.

(b)
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3.(a) Setting x= ξ ert results in the algebraic equations(
2− r −1

3 −2− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we must have det(A− rI) = r2 − 1 = 0. The roots of the
characteristic equation are r1 = 1 and r2 = −1. For r = 1, the system of equations
reduces to ξ1 = ξ2. The corresponding eigenvector is ξ(1) = (1, 1)T . Substitution
of r = −1 results in the single equation 3ξ1 = ξ2. A corresponding eigenvector is
ξ(2) = (1, 3)T . Since the eigenvalues are distinct, the general solution is

x = c1

(
1

1

)
et + c2

(
1

3

)
e−t.

(b)

The system has an unstable eigendirection along ξ(1) = (1, 1)T . Unless c1 = 0, all
solutions will diverge.

4.(a) Solution of the ODE requires analysis of the algebraic equations(
1− r 1

4 −2− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we must have det(A− rI) = r2 + r − 6 = 0. The roots
of the characteristic equation are r1 = 2 and r2 = −3. For r = 2, the system of
equations reduces to ξ1 = ξ2. The corresponding eigenvector is ξ(1) = (1, 1)T . Sub-
stitution of r = −3 results in the single equation 4ξ1 + ξ2 = 0. A corresponding
eigenvector is ξ(2) = (1,−4)T . Since the eigenvalues are distinct, the general solu-
tion is

x = c1

(
1

1

)
e2t + c2

(
1

−4

)
e−3t.
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(b)

The system has an unstable eigendirection along ξ(1) = (1, 1)T . Unless c1 = 0, all
solutions will diverge.

8.(a) Setting x= ξ ert results in the algebraic equations(
3− r 6
−1 −2− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we must have det(A− rI) = r2 − r = 0. The roots of the
characteristic equation are r1 = 1 and r2 = 0. With r = 1, the system of equations
reduces to ξ1 + 3ξ2 = 0. The corresponding eigenvector is ξ(1) = (3,−1)T . For the
case r = 0, the system is equivalent to the equation ξ1 + 2ξ2 = 0. An eigenvector
is ξ(2) = (2,−1)T . Since the eigenvalues are distinct, the general solution is

x = c1

(
3

−1

)
et + c2

(
2

−1

)
.

(b)

The entire line along the eigendirection ξ(2) = (2,−1)T consists of equilibrium
points. All other solutions diverge. The direction field changes across the line
x1 + 2x2 = 0. Eliminating the exponential terms in the solution, the trajectories
are given by x1 + 3x2 = −c2.
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10. The characteristic equation is given by∣∣∣∣2− r 2 + i
−1 −1− i− r

∣∣∣∣ = r2 − (1− i)r − i = 0 .

The equation has complex roots r1 = 1 and r2 = −i. For r = 1, the components of
the solution vector must satisfy ξ1 + (2 + i)ξ2 = 0 . Thus the corresponding eigen-

vector is ξ(1) = (2 + i ,−1)T . Substitution of r = −i results in the single equation

ξ1 + ξ2 = 0. A corresponding eigenvector is ξ(2) = (1 ,−1)T . Since the eigenvalues
are distinct, the general solution is

x = c1

(
2 + i

−1

)
et + c2

(
1

−1

)
e−it.

11. Setting x= ξ ert results in the algebraic equations1− r 1 2
1 2− r 1
2 1 1− r

ξ1ξ2
ξ3

 =

0
0
0

 .

For a nonzero solution, we must have det(A− rI) = r3 − 4r2 − r + 4 = 0 . The
roots of the characteristic equation are r1 = 4 , r2 = 1 and r3 = −1 . Setting r = 4 ,
we have −3 1 2

1 −2 1
2 1 −3

ξ1ξ2
ξ3

 =

0
0
0

 .

This system is reduces to the equations

ξ1 − ξ3 = 0

ξ2 − ξ3 = 0 .

A corresponding solution vector is given by ξ(1) = (1 , 1 , 1)T . Setting λ = 1 , the
reduced system of equations is

ξ1 − ξ3 = 0

ξ2 + 2 ξ3 = 0 .

A corresponding solution vector is given by ξ(2) = (1 ,−2 , 1)T . Finally, setting
λ = −1 , the reduced system of equations is

ξ1 + ξ3 = 0

ξ2 = 0 .

A corresponding solution vector is given by ξ(3) = (1 , 0 ,−1)T . Since the eigenval-
ues are distinct, the general solution is

x = c1

1
1
1

 e4t + c2

 1
−2
1

 et + c3

 1
0
−1

 e−t.
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12. The eigensystem is obtained from analysis of the equation3− r 2 4
2 −r 2
4 2 3− r

ξ1ξ2
ξ3

 =

0
0
0

 .

The characteristic equation of the coefficient matrix is r3 − 6r2 − 15r − 8 = 0 , with
roots r1 = 8 , r2 = −1 and r3 = −1 . Setting r = r1 = 8 , we have−5 2 4

2 −8 2
4 2 −5

ξ1ξ2
ξ3

 =

0
0
0

 .

This system is reduced to the equations

ξ1 − ξ3 = 0

2 ξ2 − ξ3 = 0 .

A corresponding solution vector is given by ξ(1) = (2 , 1 , 2)T . Setting r = −1 , the
system of equations is reduced to the single equation

2 ξ1 + ξ2 + 2 ξ3 = 0 .

Two independent solutions are obtained as

ξ(2) = (1 ,−2 , 0)T and ξ(3) = (0 ,−2 , 1)T .

Hence the general solution is

x = c1

2
1
2

 e8t + c2

 1
−2
0

 e−t + c3

 0
−2
1

 e−t.

13. Setting x= ξ ert results in the algebraic equations1− r 1 1
2 1− r −1
−8 −5 −3− r

ξ1ξ2
ξ3

 =

0
0
0

 .

For a nonzero solution, we must have det(A− rI) = r3 + r2 − 4r − 4 = 0 . The
roots of the characteristic equation are r1 = 2 , r2 = −2 and r3 = −1 . Setting
r = 2 , we have −1 1 1

2 −1 −1
−8 −5 −5

ξ1ξ2
ξ3

 =

0
0
0

 .

This system is reduces to the equations

ξ1 = 0

ξ2 + ξ3 = 0 .

A corresponding solution vector is given by ξ(1) = (0 , 1 ,−1)T . Setting λ = −1 ,
the reduced system of equations is

2 ξ1 + 3 ξ3 = 0

ξ2 − 2 ξ3 = 0 .
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A corresponding solution vector is given by ξ(2) = (3 ,−4 ,−2)T . Finally, setting
λ = −2 , the reduced system of equations is

7 ξ1 + 4 ξ3 = 0

7ξ2 − 5 ξ3 = 0 .

A corresponding solution vector is given by ξ(3) = (4 ,−5 ,−7)T . Since the eigen-
values are distinct, the general solution is

x = c1

 0
1
−1

 e2t + c2

 3
−4
−2

 e−t + c3

 4
−5
−7

 e−2t.

15. Setting x= ξ ert results in the algebraic equations(
5− r −1

3 1− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we must have det(A− rI) = r2 − 6r + 8 = 0 . The roots
of the characteristic equation are r1 = 4 and r2 = 2 . With r = 4 , the system of
equations reduces to ξ1 − ξ2 = 0. The corresponding eigenvector is ξ(1) = (1 , 1)T .
For the case r = 2 , the system is equivalent to the equation 3 ξ1 − ξ2 = 0 . An
eigenvector is ξ(2) = (1 , 3)T . Since the eigenvalues are distinct, the general solution
is

x = c1

(
1

1

)
e4t + c2

(
1

3

)
e2t.

Invoking the initial conditions, we obtain the system of equations

c1 + c2 = 2

c1 + 3 c2 = −1 .

Hence c1 = 7/2 and c2 = −3/2 , and the solution of the IVP is

x =
7

2

(
1

1

)
e4t − 3

2

(
1

3

)
e2t.

17. Setting x= ξ ert results in the algebraic equations1− r 1 2
0 2− r 2
−1 1 3− r

ξ1ξ2
ξ3

 =

0
0
0

 .

For a nonzero solution, we must have det(A− rI) = r3 − 6r2 + 11r − 6 = 0 . The
roots of the characteristic equation are r1 = 1 , r2 = 2 and r3 = 3 . Setting r = 1 ,
we have  0 1 2

0 1 2
−1 1 2

ξ1ξ2
ξ3

 =

0
0
0

 .

This system reduces to the equations

ξ1 = 0

ξ2 + 2 ξ3 = 0 .
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A corresponding solution vector is given by ξ(1) = (0 ,−2 , 1)T . Setting λ = 2 , the
reduced system of equations is

ξ1 − ξ2 = 0

ξ3 = 0 .

A corresponding solution vector is given by ξ(2) = (1 , 1 , 0)T . Finally, upon setting
λ = 3 , the reduced system of equations is

ξ1 − 2 ξ3 = 0

ξ2 − 2 ξ3 = 0 .

A corresponding solution vector is given by ξ(3) = (2 , 2 , 1)T . Since the eigenvalues
are distinct, the general solution is

x = c1

 0
−2
1

 et + c2

1
1
0

 e2t + c3

2
2
1

 e3t.

Invoking the initial conditions, the coefficients must satisfy the equations

c2 + 2 c3 = 2

−2 c1 + c2 + 2 c3 = 0

c1 + c3 = 1 .

It follows that c1 = 1 , c2 = 2 and c3 = 0 . Hence the solution of the IVP is

x =

 0
−2
1

 et + 2

1
1
0

 e2t.

18. The eigensystem is obtained from analysis of the equation−r 0 −1
2 −r 0
−1 2 4− r

ξ1ξ2
ξ3

 =

0
0
0

 .

The characteristic equation of the coefficient matrix is r3 − 4r2 − r + 4 = 0 , with
roots r1 = −1 , r2 = 1 and r3 = 4 . Setting r = r1 = −1 , we have−1 0 −1

2 −1 0
−1 2 3

ξ1ξ2
ξ3

 =

0
0
0

 .

This system is reduced to the equations

ξ1 − ξ3 = 0

ξ2 + 2 ξ3 = 0 .

A corresponding solution vector is given by ξ(1) = (1 ,−2 , 1)T . Setting r = 1 , the
system reduces to the equations

ξ1 + ξ3 = 0

ξ2 + 2 ξ3 = 0 .
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The corresponding eigenvector is ξ(2) = (1 , 2 ,−1)T . Finally, upon setting r = 4 ,
the system is equivalent to the equations

4 ξ1 + ξ3 = 0

8 ξ2 + ξ3 = 0 .

The corresponding eigenvector is ξ(3) = (2 , 1 ,−8)T . Hence the general solution is

x = c1

 1
−2
1

 e−t + c2

 1
2
−1

 et + c3

 2
1
−8

 e4t.

Invoking the initial conditions,

c1 + c2 + 2 c3 = 7

−2 c1 + 2 c2 + c3 = 5

c1 − c2 − 8 c3 = 5 .

It follows that c1 = 3 , c2 = 6 and c3 = −1 . Hence the solution of the IVP is

x = 3

 1
−2
1

 e−t + 6

 1
2
−1

 et −

 2
1
−8

 e4t.

19. Set x= ξ tr. Substitution into the system of differential equations results in

t · rtr−1ξ = A ξ tr,

which upon simplification yields is, A ξ − rξ = 0 . Hence the vector ξ and constant
r must satisfy (A− rI)ξ = 0 .

21. Setting x= ξ tr results in the algebraic equations(
5− r −1

3 1− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we must have det(A− rI) = r2 − 6r + 8 = 0 . The roots
of the characteristic equation are r1 = 4 and r2 = 2 . With r = 4 , the system of
equations reduces to ξ1 − ξ2 = 0. The corresponding eigenvector is ξ(1) = (1 , 1)T .
For the case r = 2 , the system is equivalent to the equation 3 ξ1 − ξ2 = 0 . An
eigenvector is ξ(2) = (1 , 3)T . It follows that

x(1) =

(
1

1

)
t4 and x(2) =

(
1

3

)
t2.

The Wronskian of this solution set is W
[
x(1),x(2)

]
= 2t6. Thus the solutions are

linearly independent for t > 0 . Hence the general solution is

x = c1

(
1

1

)
t4 + c2

(
1

3

)
t2.

22. As shown in Problem 19, solution of the ODE requires analysis of the equations(
4− r −3

8 −6− r

)(
ξ1
ξ2

)
=

(
0

0

)
.
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For a nonzero solution, we must have det(A− rI) = r2 + 2r = 0 . The roots of
the characteristic equation are r1 = 0 and r2 = −2 . For r = 0 , the system of
equations reduces to 4 ξ1 = 3 ξ2 . The corresponding eigenvector is ξ(1) = (3 , 4)T .
Setting r = −2 results in the single equation 2 ξ1 − ξ2 = 0 . A corresponding eigen-
vector is ξ(2) = (1 , 2)T . It follows that

x(1) =

(
3

4

)
and x(2) =

(
1

2

)
t−2.

The Wronskian of this solution set is W
[
x(1),x(2)

]
= 2 t−2. These solutions are

linearly independent for t > 0 . Hence the general solution is

x = c1

(
3

4

)
+ c2

(
1

2

)
t−2.

23. Setting x= ξ tr results in the algebraic equations(
3− r −2

2 −2− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we must have det(A− rI) = r2 − r − 2 = 0. The roots of
the characteristic equation are r1 = 2 and r2 = −1. Setting r = 2, the system of
equations reduces to ξ1 − 2ξ2 = 0. The corresponding eigenvector is ξ(1) = (2, 1)T .
With r = −1, the system is equivalent to the equation 2ξ1 − ξ2 = 0. An eigenvector
is ξ(2) = (1, 2)T . It follows that

x(1) =

(
2

1

)
t2 and x(2) =

(
1

2

)
t−1.

The Wronskian of this solution set is W
[
x(1),x(2)

]
= 3 t. Thus the solutions are

linearly independent for t > 0 . Hence the general solution is

x = c1

(
2

1

)
t2 + c2

(
1

2

)
t−1.

24.(a) The general solution is

x = c1

(
−1

2

)
e−t + c2

(
1

2

)
e−2t.
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(b)

(c)

26.(a) The general solution is

x = c1

(
−1

2

)
e−t + c2

(
1

2

)
e2t.
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(b)

(c)

28.(a) We note that (A− riI)ξ(i) = 0 , for i = 1, 2 .

(b) It follows that (A− r2I)ξ(1) =A ξ(1) − r2ξ
(1) = r1ξ

(1) − r2ξ
(1) .

(c) Suppose that ξ(1) and ξ(2) are linearly dependent. Then there exist constants

c1 and c2 , not both zero, such that c1ξ
(1) + c2ξ

(2) = 0 . Assume that c1 6= 0 . It
is clear that (A− r2I)(c1ξ

(1) + c2 ξ
(2)) = 0 . On the other hand,

(A− r2I)(c1ξ
(1) + c2 ξ

(2)) = c1(r1 − r2)ξ(1) + 0 = c1(r1 − r2)ξ(1).

Since r1 6= r2 , we must have c1 = 0 , which leads to a contradiction.

(d) Note that (A− r1I)ξ(2) = (r2 − r1)ξ(2).

(e) Let n = 3, with r1 6= r2 6= r3. Suppose that ξ(1), ξ(2) and ξ(3) are indeed linearly
dependent. Then there exist constants c1, c2 and c3, not all zero, such that

c1ξ
(1) + c2ξ

(2) + c3ξ
(3) = 0 .

Assume that c1 6= 0 . It is clear that (A− r2I)(c1ξ
(1) + c2 ξ

(2) + c3ξ
(3)) = 0 . On

the other hand,

(A− r2I)(c1ξ
(1) + c2 ξ

(2) + c3ξ
(3)) = c1(r1 − r2)ξ(1) + c3(r3 − r2)ξ(3).
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It follows that c1(r1 − r2)ξ(1) + c3(r3 − r2)ξ(3) = 0 . Based on the result of part

(a), which is actually not dependent on the value of n , the vectors ξ(1)and ξ(3) are
linearly independent. Hence we must have c1(r1 − r2) = c3(r3 − r2) = 0 , which
leads to a contradiction.

29.(a) Let x1 = y and x2 = y ′. It follows that x ′1 = x2 and

x ′2 = y ′′ = −1

a
(c y + b y ′).

In terms of the new variables, we obtain the system of two first order ODEs

x ′1 = x2

x ′2 = −1

a
(c x1 + b x2) .

(b) The coefficient matrix is given by

A =

(
0 1
− c
a − b

a

)
.

Setting x= ξ ert results in the algebraic equations(
−r 1
− c
a − b

a − r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we must have

det(A− rI) = r2 +
b

a
r +

c

a
= 0 .

Multiplying both sides of the equation by a , we obtain a r2 + b r + c = 0 .

30.(a) Solution of the ODE requires analysis of the algebraic equations(
−1/10− r 3/40

1/10 −1/5− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we must have det(A− rI) = 0 . The characteristic equation
is 80 r2 + 24 r + 1 = 0 , with roots r1 = −1/4 and r2 = −1/20 . With r = −1/4 ,
the system of equations reduces to 2 ξ1 + ξ2 = 0 . The corresponding eigenvector is
ξ(1) = (1 ,−2)T . Substitution of r = −1/20 results in the equation 2 ξ1 − 3 ξ2 = 0 .

A corresponding eigenvector is ξ(2) = (3 , 2)T . Since the eigenvalues are distinct,
the general solution is

x = c1

(
1

−2

)
e−t/4 + c2

(
3

2

)
e−t/20.

Invoking the initial conditions, we obtain the system of equations

c1 + 3 c2 = −17

−2 c1 + 2 c2 = −21 .



288 Chapter 7. Systems of First Order Linear Equations

Hence c1 = 29/8 and c2 = −55/8 , and the solution of the IVP is

x =
29

8

(
1

−2

)
e−t/4 − 55

8

(
3

2

)
e−t/20.

(b)

(c) Both functions are monotone increasing. It is easy to show that−0.5 ≤ x1(t) < 0
and −0.5 ≤ x2(t) < 0 provided that t > T ≈ 74.39 .

32.(a) The system of differential equations is

d

dt

(
I

V

)
=

(
−1/2 −1/2
3/2 −5/2

)(
I

V

)
.

Solution of the system requires analysis of the eigenvalue problem(
−1/2− r −1/2

3/2 −5/2− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

The characteristic equation is r2 + 3r + 2 = 0, with roots r1 = −1 and r2 = −2.
With r = −1, the equations reduce to ξ1 − ξ2 = 0. A corresponding eigenvector
is given by ξ(1) = (1, 1)T . Setting r = −2, the system reduces to the equation

3ξ1 − ξ2 = 0. An eigenvector is ξ(2) = (1, 3)T . Hence the general solution is(
I

V

)
= c1

(
1

1

)
e−t + c2

(
1

3

)
e−2t.

(b) The eigenvalues are distinct and both negative. We find that the equilibrium
point (0, 0) is a stable node. Hence all solutions converge to (0, 0).

33.(a) Solution of the ODE requires analysis of the algebraic equations(
−R1

L − r − 1
L

1
C − 1

CR2
− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

The characteristic equation is

r2 + (
L+ CR1R2

LCR2
)r +

R1 +R2

LCR2
= 0 .
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The eigenvectors are real and distinct, provided that the discriminant is positive.
That is,

(
L+ CR1R2

LCR2
)2 − 4(

R1 +R2

LCR2
) > 0,

which simplifies to the condition

(
1

CR2
− R1

L
)2 − 4

LC
> 0 .

(b) The parameters in the ODE are all positive. Observe that the sum of the roots
is

−L+ CR1R2

LCR2
< 0 .

Also, the product of the roots is

R1 +R2

LCR2
> 0 .

It follows that both roots are negative. Hence the equilibrium solution I = 0, V = 0
represents a stable node, which attracts all solutions.

(c) If the condition in part (a) is not satisfied, that is,

(
1

CR2
− R1

L
)2 − 4

LC
≤ 0 ,

then the real part of the eigenvalues is

Re(r1,2) = −L+ CR1R2

2LCR2
.

As long as the parameters are all positive, then the solutions will still converge to
the equilibrium point (0 , 0).

7.6

2.(a) Setting x= ξ ert results in the algebraic equations(
−1− r −4

1 −1− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we require that det(A− rI) = r2 + 2r + 5 = 0. The roots
of the characteristic equation are r = −1 ± 2i . Substituting r = −1 − 2i , the two
equations reduce to ξ1 + 2i ξ2 = 0 . The two eigenvectors are ξ(1) = (−2i , 1)T and

ξ(2) = (2i , 1)T . Hence one of the complex-valued solutions is given by

x(1) =

(
−2i

1

)
e−(1+2i)t =

(
−2i

1

)
e−t(cos 2t− i sin 2t) =

= e−t
(
−2 sin 2t

cos 2t

)
+ i e−t

(
−2 cos 2t

− sin 2t

)
.
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Based on the real and imaginary parts of this solution, the general solution is

x = c1 e
−t
(
−2 sin 2t

cos 2t

)
+ c2 e

−t
(

2 cos 2t

sin 2t

)
.

(b)

3.(a) Solution of the ODEs is based on the analysis of the algebraic equations(
2− r −5

1 −2− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we require that det(A− rI) = r2 + 1 = 0. The roots of the
characteristic equation are r = ±i . Setting r = i , the equations are equivalent to
ξ1 − (2 + i)ξ2 = 0 . The eigenvectors are ξ(1) = (2 + i , 1)T and ξ(2) = (2− i , 1)T .
Hence one of the complex-valued solutions is given by

x(1) =

(
2 + i

1

)
eit =

(
2 + i

1

)
(cos t+ i sin t) =

=

(
2 cos t− sin t

cos t

)
+ i

(
cos t+ 2 sin t

sin t

)
.

Therefore the general solution is

x = c1

(
2 cos t− sin t

cos t

)
+ c2

(
cos t+ 2 sin t

sin t

)
.

The solution may also be written as

x = c1

(
5 cos t

2 cos t+ sin t

)
+ c2

(
5 sin t

− cos t+ 2 sin t

)
.
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(b)

4.(a) Setting x= ξ ert results in the algebraic equations(
2− r −5/2
9/5 −1− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we require that det(A− rI) = r2 − r + 5
2 = 0. The roots

of the characteristic equation are r = (1 ± 3i)/2 . With r = (1 + 3 i)/2 , the equa-
tions reduce to the single equation (3− 3i)ξ1 − 5 ξ2 = 0 . The corresponding eigen-

vector is given by ξ(1) = (5 , 3− 3 i)T . Hence one of the complex-valued solutions
is

x(1) =

(
5

3− 3i

)
e(1+3i)t/2 =

(
2 + i

1

)
et/2(cos

3

2
t+ i sin

3

2
t) =

= et/2
(

2 cos 3
2 t− sin 3

2 t

cos 3
2 t

)
+ iet/2

(
cos 3

2 t+ 2 sin 3
2 t

sin 3
2 t

)
.

The general solution is

x = c1 e
t/2

(
2 cos 3

2 t− sin 3
2 t

cos 3
2 t

)
+ c2 e

t/2

(
cos 3

2 t+ 2 sin 3
2 t

sin 3
2 t

)
.

The solution may also be written as

x = c1 e
t/2

(
5 cos 3

2 t

3 cos 3
2 t+ 3 sin 3

2 t

)
+ c2 e

t/2

(
5 sin 3

2 t

−3 cos 3
2 t+ 3 sin 3

2 t

)
.
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(b)

5.(a) Setting x= ξ tr results in the algebraic equations(
1− r −1

5 −3− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

The characteristic equation is r2 + 2 r + 2 = 0 , with roots r = −1 ± i . Substitut-
ing r = −1− i reduces the system of equations to (2 + i)ξ1 − ξ2 = 0 . The eigenvec-

tors are ξ(1) = (1 , 2 + i)T and ξ(2) = (1 , 2− i)T . Hence one of the complex-valued
solutions is given by

x(1) =

(
1

2 + i

)
e−(1+i)t =

(
1

2 + i

)
e−t(cos t− i sin t) =

= e−t
(

cos t

2 cos t+ sin t

)
+ ie−t

(
− sin t

cos t− 2 sin t

)
.

The general solution is

x = c1 e
−t
(

cos t

2 cos t+ sin t

)
+ c2 e

−t
(

sin t

− cos t+ 2 sin t

)
.

(b)



7.6 293

6.(a) Solution of the ODEs is based on the analysis of the algebraic equations(
1− r 2
−5 −1− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we require that det(A− rI) = r2 + 9 = 0. The roots of the
characteristic equation are r = ± 3 i . Setting r = 3 i , the two equations reduce
to (1− 3 i)ξ1 + 2ξ2 = 0 . The corresponding eigenvector is ξ(1) = (−2 , 1− 3i)T .
Hence one of the complex-valued solutions is given by

x(1) =

(
−2

1− 3i

)
e3it =

(
−2

1− 3i

)
(cos 3t+ i sin 3t) =

=

(
−2 cos 3t

cos 3t+ 3 sin 3t

)
+ i

(
−2 sin 3t

−3 cos 3t+ sin 3t

)
.

The general solution is

x = c1

(
−2 cos 3t

cos 3t+ 3 sin 3t

)
+ c2

(
2 sin 3t

3 cos 3t− sin 3t

)
.

(b)

8. The eigensystem is obtained from analysis of the equation−3− r 0 2
1 −1− r 0
−2 −1 −r

ξ1ξ2
ξ3

 =

0
0
0

 .

The characteristic equation of the coefficient matrix is r3 + 4r2 + 7r + 6 = 0 , with
roots r1 = −2 , r2 = −1−

√
2 i and r3 = −1 +

√
2 i . Setting r = −2 , the equa-

tions reduce to
−ξ1 + 2 ξ3 = 0

ξ1 + ξ2 = 0 .

The corresponding eigenvector is ξ(1) = (2 ,−2 , 1)T . With r = −1−
√

2 i , the
system of equations is equivalent to

(2− i
√

2 )ξ1 − 2 ξ3 = 0

ξ1 + i
√

2 ξ2 = 0 .



294 Chapter 7. Systems of First Order Linear Equations

An eigenvector is given by ξ(2) = (−i
√

2 , 1 ,−1− i
√

2 )T . Hence one of the complex-
valued solutions is given by

x(2) =

 −i
√

2
1

−1− i
√

2

 e−(1+i
√

2)t =

 −i
√

2
1

−1− i
√

2

 e−t(cos
√

2 t− i sin
√

2 t) =

= e−t

 −
√

2 sin
√

2 t

cos
√

2 t

− cos
√

2 t−
√

2 sin
√

2 t

+ ie−t

 −
√

2 cos
√

2 t

− sin
√

2 t

−
√

2 cos
√

2 t+ sin
√

2 t

 .

The other complex-valued solution is x(3) = ξ(2) er3t. The general solution is

x = c1

 2
−2
1

 e−2t+

+ c2 e
−t

 √
2 sin

√
2 t

− cos
√

2 t

cos
√

2 t+
√

2 sin
√

2 t

+ c3e
−t

 √
2 cos

√
2 t

sin
√

2 t√
2 cos

√
2 t− sin

√
2 t

 .

It is easy to see that all solutions converge to the equilibrium point (0 , 0 , 0) .

10. Solution of the system of ODEs requires that(
−3− r 2
−1 −1− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

The characteristic equation is r2 + 4 r + 5 = 0 , with roots r = −2 ± i . Substi-
tuting r = −2 + i , the equations are equivalent to ξ1 − (1− i)ξ2 = 0 . The corre-

sponding eigenvector is ξ(1) = (1− i , 1)T . One of the complex-valued solutions is
given by

x(1) =

(
1− i

1

)
e(−2+i)t =

(
1− i

1

)
e−2t(cos t+ i sin t) =

= e−2t

(
cos t+ sin t

cos t

)
+ ie−2t

(
− cos t+ sin t

sin t

)
.

Hence the general solution is

x = c1 e
−2t

(
cos t+ sin t

cos t

)
+ c2 e

−2t

(
− cos t+ sin t

sin t

)
.

Invoking the initial conditions, we obtain the system of equations

c1 − c2 = 1

c1 = −2 .

Solving for the coefficients, the solution of the initial value problem is

x = −2 e−2t

(
cos t+ sin t

cos t

)
− 3 e−2t

(
− cos t+ sin t

sin t

)
= e−2t

(
cos t− 5 sin t

−2 cos t− 3 sin t

)
.
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The solution converges to (0, 0) as t→∞.

12. Solution of the ODEs is based on the analysis of the algebraic equations(
− 4

5 − r 2
−1 6

5 − r

)(
ξ1
ξ2

)
=

(
0

0

)
.

The characteristic equation is 25 r2 − 10 r + 26 = 0 , with roots r = 1/5 ± i . Set-
ting r = 1/5 + i , the two equations reduce to ξ1 − (1− i)ξ2 = 0 . The correspond-

ing eigenvector is ξ(1) = (1− i , 1)T . One of the complex-valued solutions is given
by

x(1) =

(
1− i

1

)
e( 1

5 +i)t =

(
1− i

1

)
et/5(cos t+ i sin t) =

= et/5
(

cos t+ sin t

cos t

)
+ iet/5

(
− cos t+ sin t

sin t

)
.

Hence the general solution is

x = c1e
t/5

(
cos t+ sin t

cos t

)
+ c2e

t/5

(
− cos t+ sin t

sin t

)
.

(b) Let x(0) = (x0
1 , x

0
2)T . The solution of the initial value problem is

x = x0
2 e

t/5

(
cos t+ sin t

cos t

)
+ (x0

2 − x0
1)et/5

(
− cos t+ sin t

sin t

)
= et/5

(
x0

1 cos t+ (2x0
2 − x0

1) sin t

x0
2 cos t+ (x0

2 − x0
1) sin t

)
.

With x(0) = (1 , 2)T , the solution is

x = et/5
(

cos t+ 3 sin t

2 cos t+ sin t

)
.
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(c)

(d)

13.(a) The characteristic equation is r2 − 2αr + 1 + α2 = 0, with roots r = α ± i .

(b) When α < 0 and α > 0 , the equilibrium point (0 , 0) is a stable spiral and an
unstable spiral, respectively. The equilibrium point is a center when α = 0 .

(c)

(a) α = −1/8 (b) α = 1/8
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14.(a) The roots of the characteristic equation, r2 − α r + 5 = 0 , are

r1,2 =
α

2
± 1

2

√
α2 − 20 .

(b) Note that the roots are complex when −
√

20 < α <
√

20 . For the case when
α ∈ (−

√
20 , 0), the equilibrium point (0 , 0) is a stable spiral. On the other hand,

when α ∈ (0 ,
√

20 ), the equilibrium point is an unstable spiral. For the case α = 0,
the roots are purely imaginary, so the equilibrium point is a center. When α2 > 20 ,
the roots are real and distinct. The equilibrium point becomes a node, with its
stability dependent on the sign of α . Finally, the case α2 = 20 marks the transition
from spirals to nodes.

(c)

(a) α = −5 (b) α = −3 (c) α = −1/2 (d) α = 1/2

17. The characteristic equation of the coefficient matrix is r2 + 2r + 1 + α = 0 ,
with roots given formally as r1,2 = −1 ±

√
−α . The roots are real provided that

α ≤ 0 . First note that the sum of the roots is −2 and the product of the roots is
1 + α . For negative values of α , the roots are distinct, with one always negative.
When α < −1, the roots have opposite signs. Hence the equilibrium point is a
saddle. For the case −1 < α < 0 , the roots are both negative, and the equilibrium
point is a stable node. α = −1 represents a transition from saddle to node. When
α = 0 , both roots are equal. For the case α > 0 , the roots are complex conjugates,
with negative real part. Hence the equilibrium point is a stable spiral.

(a) α = −3/2 (b) α = −1/2 (c) α = 1/2
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19. The characteristic equation for the system is given by

r2 + (4− α)r + 10− 4α = 0.

The roots are
r1,2 = −2 +

α

2
±
√
α2 + 8α− 24 .

First note that the roots are complex when−4− 2
√

10 < α < −4 + 2
√

10 . We also
find that when −4− 2

√
10 < α < −4 + 2

√
10 , the equilibrium point is a stable

spiral. For α > −4 + 2
√

10 , the roots are real. When α > 2.5 , the roots have
opposite signs, with the equilibrium point being a saddle. For the case −4 +
2
√

10 < α < 2.5 , the roots are both negative, and the equilibrium point is a stable
node. Finally, when α < −4− 2

√
10 , both roots are negative, with the equilibrium

point being a stable node.

(a) α = −11 (b) α = −8 (c) α = 2

(d) α = 2.4 (e) α = 4

20. The characteristic equation is r2 + 2 r − (24 + 8α) = 0 , with roots

r1,2 = −1 ±
√

25 + 8α .

The roots are complex when α < −25/8 . Since the real part is negative, the origin
is a stable spiral. Otherwise the roots are real. When −25/8 < α < −3 , both roots
are negative, and hence the equilibrium point is a stable node. For α > −3 , the
roots are of opposite sign and the origin is a saddle.
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(a) α = −4 (b) α = −3.05 (c) α = −2

22. Based on the method in Problem 19 of Section 7.5, setting x= ξ tr results in
the algebraic equations (

2− r −5
1 −2− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

The characteristic equation for the system is r2 + 1 = 0 , with roots r1,2 = ± i .
With r = i , the equations reduce to the single equation ξ1 − (2 + i)ξ2 = 0. A cor-

responding eigenvector is ξ(1) = (2 + i , 1)T . One complex-valued solution is

x(1) =

(
2 + i

1

)
ti .

We can write ti = ei ln t. Hence

x(1) =

(
2 + i

1

)
ei ln t =

(
2 + i

1

)
[cos(ln t) + i sin(ln t)] =

=

(
2 cos(ln t)− sin(ln t)

cos(ln t)

)
+ i

(
cos(ln t) + 2 sin(ln t)

sin(ln t)

)
.

Therefore the general solution is

x = c1

(
2 cos(ln t)− sin(ln t)

cos(ln t)

)
+ c2

(
cos(ln t) + 2 sin(ln t)

sin(ln t)

)
.

Other combinations are also possible.

24.(a) The characteristic equation of the system is

r3 +
2

5
r2 +

81

80
r − 17

160
= 0 ,

with eigenvalues r1 = 1/10, and r2,3 = −1/4± i. For r = 1/10, simple calculations

reveal that a corresponding eigenvector is ξ(1) = (0, 0, 1)T . Setting r = −1/4− i,
we obtain the system of equations

ξ1 − i ξ2 = 0

ξ3 = 0 .
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A corresponding eigenvector is ξ(2) = (i , 1 , 0)T . Hence one solution is

x(1) =

0
0
1

 et/10.

Another solution, which is complex-valued, is given by

x(2) =

i1
0

 e−( 1
4 +i)t =

i1
0

 e−t/4(cos t− i sin t) =

= e−t/4

sin t
cos t

0

+ ie−t/4

 cos t
− sin t

0

 .

Using the real and imaginary parts of x(2), the general solution is constructed as

x = c1

0
0
1

 et/10 + c2 e
−t/4

sin t
cos t

0

+ c3 e
−t/4

 cos t
− sin t

0

 .

(b) Let x(0) = (x0
1 , x

0
2 , x

0
3) . The solution can be written as

x =

 0
0

x0
3 e

t/10

+ e−t/4

x0
2 sin t+ x0

1 cos t
x0

2 cos t− x0
1 sin t

0

 .

With x(0) = (1 , 1 , 1), the solution of the initial value problem is

x =

 0
0

et/10

+ e−t/4

sin t+ cos t
cos t− sin t

0

 .

(a) x1 − x2 (b) x1 − x3 (c) x2 − x3
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(c)

25.(a) Based on Problems 19-21 of Section 7.1, the system of differential equations
is

d

dt

(
I

V

)
=

(
−R1

L − 1
L

1
C − 1

CR2

)(
I

V

)
=

(
− 1

2 − 1
8

2 − 1
2

)(
I

V

)
,

since R1 = R2 = 4 ohms, C = 1/2 farads and L = 8 henrys.

(b) The eigenvalue problem is(
− 1

2 − r − 1
8

2 − 1
2 − r

)(
ξ1
ξ2

)
=

(
0

0

)
.

The characteristic equation of the system is r2 + r + 1
2 = 0 , with eigenvalues

r1,2 = −1

2
± 1

2
i .

Setting r = −1/2 + i/2 , the algebraic equations reduce to 4iξ1 + ξ2 = 0 . It follows

that ξ(1) = (1 ,−4i)T . Hence one complex-valued solution is(
I

V

)(1)

=

(
1

−4i

)
e(−1+i)t/2 =

(
1

−4i

)
e−t/2 [cos(t/2) + i sin(t/2)] =

= e−t/2
(

cos(t/2)

4 sin(t/2)

)
+ ie−t/2

(
sin(t/2)

−4 cos(t/2)

)
.

Therefore the general solution is(
I

V

)
= c1e

−t/2
(

cos(t/2)

4 sin(t/2)

)
+ c2e

−t/2
(

sin(t/2)

−4 cos(t/2)

)
.

(c) Imposing the initial conditions, we arrive at the equations c1 = 2 and c2 =
−3/4 , and (

I

V

)
= e−t/2

(
2 cos(t/2)− 3

4 sin(t/2)

8 sin(t/2) + 3 cos(t/2)

)
.

(d) Since the eigenvalues have negative real parts, all solutions converge to the
origin.
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26.(a) The characteristic equation of the system is

r2 +
1

RC
r +

1

CL
= 0 ,

with eigenvalues

r1,2 = − 1

2RC
± 1

2RC

√
1− 4R2C

L
.

The eigenvalues are real and different provided that

1− 4R2C

L
> 0 .

The eigenvalues are complex conjugates as long as

1− 4R2C

L
< 0 .

(b) With the specified values, the eigenvalues are r1,2 = −1 ± i . The eigenvec-

tor corresponding to r = −1 + i is ξ(1) = (1 ,−4i)T . Hence one complex-valued
solution is(

I

V

)(1)

=

(
1

−1 + i

)
e(−1+i)t =

(
1

−1 + i

)
e−t(cos t+ i sin t) =

= e−t
(

cos t

− cos t− sin t

)
+ ie−t

(
sin t

cos t− sin t

)
.

Therefore the general solution is(
I

V

)
= c1e

−t
(

cos t

− cos t− sin t

)
+ c2e

−t
(

sin t

cos t− sin t

)
.

(c) Imposing the initial conditions, we arrive at the equations

c1 = 2

−c1 + c2 = 1 ,

with c1 = 2 and c2 = 3 . Therefore the solution of the IVP is(
I

V

)
= e−t

(
2 cos t+ 3 sin t

cos t− 5 sin t

)
.

(d) Since Re(r1,2) = −1 , all solutions converge to the origin.

27.(a) Suppose that c1a+c2b= 0 . Since a and b are the real and imaginary parts

of the vector ξ(1) , respectively, a= (ξ(1) + ξ(1))/2 and b= (ξ(1) − ξ(1))/2i . Hence

c1(ξ(1) + ξ(1))− ic2(ξ(1) − ξ(1)) = 0 ,

which leads to
(c1 − ic2)ξ(1) + (c1 + ic2)ξ(1) = 0 .
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(b) Now since ξ(1) and ξ(1) are linearly independent, we must have

c1 − ic2 = 0

c1 + ic2 = 0 .

It follows that c1 = c2 = 0 .

(c) Recall that

u(t) = eλt(a cos µt− b sin µt)

v(t) = eλt(a cos µt+ b sin µt) .

Consider the equation c1u(t0) + c2v(t0) = 0 , for some t0. We can then write

c1e
λt0(a cos µt0 − b sin µt0) + c2e

λt0(a cos µt0 + b sin µt0) = 0 . (∗)

Rearranging the terms, and dividing by the exponential,

(c1 + c2) cos µt0 a + (c2 − c1) sin µt0 b = 0 .

From part (b), since a and b are linearly independent, it follows that

(c1 + c2) cos µt0 = (c2 − c1) sin µt0 = 0 .

Without loss of generality, assume that the trigonometric factors are nonzero. Oth-
erwise proceed again from Equation (∗), above. We then conclude that

c1 + c2 = 0 and c2 − c1 = 0 ,

which leads to c1 = c2 = 0. Thus u(t0) and v(t0) are linearly independent for some
t0, and hence the functions are linearly independent at every point.

28.(a) Let x1 = u and x2 = u ′. It follows that x ′1 = x2 and

x ′2 = u ′′ = − k
m
u .

In terms of the new variables, we obtain the system of two first order ODEs

x ′1 = x2

x ′2 = − k
m
x1 .

(b) The associated eigenvalue problem is(
−r 1
−k/m −r

)(
ξ1
ξ2

)
=

(
0

0

)
.

The characteristic equation is r2 + k/m = 0 , with roots r1,2 = ± i
√
k/m .

(c) Since the eigenvalues are purely imaginary, the origin is a center. Hence the
phase curves are ellipses, with a clockwise flow. For computational purposes, let
k = 1 and m = 2 .
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(a) k = 1, m = 2 (b) x1 − x2 (c) x1, x2 vs t

(d) The general solution of the second order equation is

u(t) = c1 cos

√
k

m
t+ c2 sin

√
k

m
t .

The general solution of the system of ODEs is given by

x = c1

(√m
k sin

√
k
m t

cos
√

k
m t

)
+ c2

(√m
k cos

√
k
m t

− sin
√

k
m t

)
.

It is evident that the natural frequency of the system is equal to |r1| = |r2|.

29.(a) Set x = (x1 , x2 )T . We can rewrite Equation (22) in the form(
2 0
0 9/4

)(
d2x1

dt2
d2x2

dt2

)
=

(
−4 3
3 − 27

4

)(
x1

x2

)
.

Multiplying both sides of this equation by the inverse of the diagonal matrix, we
obtain (

d2x1

dt2
d2x2

dt2

)
=

(
−2 3/2
4/3 −3

)(
x1

x2

)
.

(b) Substituting x = ξ ert ,

r2

(
ξ1
ξ2

)
ert =

(
−2 3/2
4/3 −3

)(
ξ1
ξ2

)
ert,

which can be written as

(A− r2I)ξ = 0 .

(c) The eigenvalues are r2
1 = −1 and r2

2 = −4 , with corresponding eigenvectors

ξ(1) =

(
3

2

)
and ξ(2) =

(
3

−4

)
.

(d) The linearly independent solutions are

x(1) = C̃1

(
3

2

)
eit and x(2) = C̃2

(
3

−4

)
e2it .
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in which C̃1 and C̃2 are arbitrary complex coefficients. In scalar form,

x1 = 3c1 cos t+ 3c2 sin t+ 3c3 cos 2t+ 3c4 sin 2t

x2 = 2c1 cos t+ 2c2 sin t− 4c3 cos 2t− 4c4 sin 2t

(e) Differentiating the above expressions,

x ′1 = −3c1 sin t+ 3c2 cos t− 6c3 sin 2t+ 6c4 cos 2t

x ′2 = −2c1 sin t+ 2c2 cos t+ 8c3 sin 2t− 8c4 cos 2t

It is evident that y= (x1, x2, x
′
1, x

′
2)T as in Equation (31).

31.(a) The second order system is given by

d2x1

dt2
= −2x1 + x2

d2x2

dt2
= x1 − 2x2

Let y1 = x1, y2 = x2, y3 = x ′1 and y4 = x ′2. In terms of the new variables, we have

y ′1 = y3

y ′2 = y4

y ′3 = −2y1 + y2

y ′4 = y1 − 2y2

hence the coefficient matrix is

A =


0 0 1 0
0 0 0 1
−2 1 0 0
1 −2 0 0

 .

(b) The eigenvalues and corresponding eigenvectors of A are:

r1 = i , ξ(1) = (1, 1, i, i)T

r2 = −i , ξ(2) = (1, 1,−i,−i)T

r3 =
√

3 i , ξ(3) = (1,−1,
√

3 i,−
√

3 i)T

r4 = −
√

3 i , ξ(4) = (1,−1,−
√

3 i,
√

3 i)T

(c) Note that

ξ(1)eit =


1
1
i
i

 (cos t+ i sin t)

and

ξ(3)e
√

3 it =


1
−1√
3 i

−
√

3 i

 (cos
√

3 t+ i sin
√

3 t).
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Hence the general solution is

y = c1


cos t
cos t
− sin t
− sin t

+ c2


sin t
sin t
cos t
cos t

+ c3


cos
√

3 t

− cos
√

3 t

−
√

3 sin
√

3 t√
3 sin

√
3 t

+ c4


sin
√

3 t

− sin
√

3 t√
3 cos

√
3 t

−
√

3 cos
√

3 t

 .

(d) The two modes have natural frequencies of ω1 = 1 rad/sec and ω2 =
√

3 rad/sec.

(e) For the initial condition y(0) = (−1, 3, 0, 0)T , it is necessary that
−1
3
0
0

 = c1


1
1
0
0

+ c2


0
0
1
1

+ c3


1
−1
0
0

+ c4


0
0√
3

−
√

3

 ,

resulting in the coefficients c1 = 1, c2 = 0, c3 = −2 and c4 = 0.

The solutions are not periodic, since the two natural frequencies are incommensu-
rate.
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7.7

1.(a) The eigenvalues and eigenvectors were found in Problem 1, Section 7.5.

r1 = −1, ξ(1) =

(
1

2

)
; r2 = 2, ξ(2) =

(
2

1

)
.

The general solution is

x = c1

(
e−t

2 e−t

)
+ c2

(
2 e2t

e2t

)
.

Hence a fundamental matrix is given by

Ψ(t) =

(
e−t 2 e2t

2 e−t e2t

)
.

(b) We now have

Ψ(0) =

(
1 2
2 1

)
and Ψ−1(0) =

1

3

(
−1 2
2 −1

)
,

So that

Φ(t) = Ψ(t)Ψ−1(0) =
1

3

(
−e−t + 4e2t 2e−t − 2e2t

−2e−t + 2e2t 4e−t − e2t

)
.

3.(a) The eigenvalues and eigenvectors were found in Problem 3, Section 7.5. The
general solution of the system is

x = c1

(
et

et

)
+ c2

(
e−t

3e−t

)
.

Hence a fundamental matrix is given by

Ψ(t) =

(
et e−t

et 3e−t

)
.

(b) Given the initial conditions x(0) =e(1), we solve the equations

c1 + c2 = 1

c1 + 3c2 = 0 ,

to obtain c1 = 3/2 , c2 = −1/2 . The corresponding solution is

x =

( 3
2e
t − 1

2e
−t

3
2e
t − 3

2e
−t

)
.

Given the initial conditions x(0) =e(2), we solve the equations

c1 + c2 = 0

c1 + 3c2 = 1 ,
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to obtain c1 = −1/2 , c2 = 1/2 . The corresponding solution is

x =

(− 1
2e
t + 1

2e
−t

− 1
2e
t + 3

2e
−t

)
.

Therefore the fundamental matrix is

Φ(t) =
1

2

(
3et − e−t −et + e−t

3et − 3e−t −et + 3e−t

)
.

5.(a) The general solution, found in Problem 3, Section 7.6, is given by

x = c1

(
5 cos t

2 cos t+ sin t

)
+ c2

(
5 sin t

− cos t+ 2 sin t

)
.

Hence a fundamental matrix is given by

Ψ(t) =

(
5 cos t 5 sin t

2 cos t+ sin t − cos t+ 2 sin t

)
.

(b) Given the initial conditions x(0) =e(1), we solve the equations

5c1 = 1

2c1 − c2 = 0 ,

resulting in c1 = 1/5 , c2 = 2/5 . The corresponding solution is

x =

(
cos t+ 2 sin t

sin t

)
.

Given the initial conditions x(0) =e(2), we solve the equations

5c1 = 0

2c1 − c2 = 1 ,

resulting in c1 = 0 , c2 = −1 . The corresponding solution is

x =

(
−5 sin t

cos t− 2 sin t

)
.

Therefore the fundamental matrix is

Φ(t) =

(
cos t+ 2 sin t −5 sin t

sin t cos t− 2 sin t

)
.

7.(a) The general solution, found in Problem 15, Section 7.5, is given by

x = c1

(
e2t

3e2t

)
+ c2

(
e4t

e4t

)
.

Hence a fundamental matrix is given by

Ψ(t) =

(
e2t e4t

3e2t e4t

)
.
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(b) Given the initial conditions x(0) =e(1), we solve the equations

c1 + c2 = 1

3c1 + c2 = 0 ,

resulting in c1 = −1/2 , c2 = 3/2 . The corresponding solution is

x =
1

2

(
−e2t + 3e4t

−3e2t + 3e4t

)
.

The initial conditions x(0) =e(2) require that

c1 + c2 = 0

3c1 + c2 = 1 ,

resulting in c1 = 1/2 , c2 = −1/2 . The corresponding solution is

x =
1

2

(
e2t − e4t

3e2t − e4t

)
.

Therefore the fundamental matrix is

Φ(t) =
1

2

(
−e2t + 3e4t e2t − e4t

−3e2t + 3e4t 3e2t − e4t

)
.

8.(a) The general solution, found in Problem 5, Section 7.6, is given by

x = c1e
−t
(

cos t

2 cos t+ sin t

)
+ c2e

−t
(

sin t

− cos t+ 2 sin t

)
.

Hence a fundamental matrix is given by

Ψ(t) =

(
e−t cos t e−t sin t

2e−t cos t+ e−t sin t −e−t cos t+ 2e−t sin t

)
.

(b) The specific solution corresponding to the initial conditions x(0) =e(1) is

x = e−t
(

cos t+ 2 sin t

5 sin t

)
.

For the initial conditions x(0) =e(2), the solution is

x = e−t
(

− sin t

cos t− 2 sin t

)
.

Therefore the fundamental matrix is

Φ(t) = e−t
(

cos t+ 2 sin t − sin t
5 sin t cos t− 2 sin t

)
.

9.(a) The general solution, found in Problem 13, Section 7.5, is given by

x = c1

 4e−2t

−5e−2t

−7e−2t

+ c2

 3e−t

−4e−t

−2e−t

+ c3

 0
e2t

−e2t

 .
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Hence a fundamental matrix is given by

Ψ(t) =

 4e−2t 3e−t 0
−5e−2t −4e−t e2t

−7e−2t −2e−t −e2t

 .

(b) Given the initial conditions x(0) =e(1), we solve the equations

4c1 + 3c2 = 1

−5c1 − 4c2 + c3 = 0

−7c1 − 2c2 − c3 = 0 ,

resulting in c1 = −1/2 , c2 = 1 , c3 = 3/2 . The corresponding solution is

x =

 −2e−2t + 3e−t

5e−2t/2− 4e−t + 3e2t/2
7e−2t/2− 2e−t − 3e2t/2

 .

The initial conditions x(0) =e(2), we solve the equations

4c1 + 3c2 = 0

−5c1 − 4c2 + c3 = 1

−7c1 − 2c2 − c3 = 0 ,

resulting in c1 = −1/4 , c2 = 1/3 , c3 = 13/12 . The corresponding solution is

x =

 −e−2t + e−t

5e−2t/4− 4e−t/3 + 13e2t/12
7e−2t/4− 2e−t/3− 13e2t/12

 .

The initial conditions x(0) =e(3), we solve the equations

4c1 + 3c2 = 0

−5c1 − 4c2 + c3 = 0

−7c1 − 2c2 − c3 = 1 ,

resulting in c1 = −1/4 , c2 = 1/3 , c3 = 1/12 . The corresponding solution is

x =

 −e−2t + e−t

5e−2t/4− 4e−t/3 + e2t/12
7e−2t/4− 2e−t/3− e2t/12

 .

Therefore the fundamental matrix is

Φ(t) =
1

12

 −24e−2t + 36e−t −12e−2t + 12e−t −12e−2t + 12e−t

30e−2t − 48e−t + 18e2t 15e−2t − 16e−t + 13e2t 15e−2t − 16e−t + e2t

42e−2t − 24e−t − 18e2t 21e−2t − 8e−t − 13e2t 21e−2t − 8e−t − e2t

 .

12. The solution of the initial value problem is given by

x = Φ(t)x(0) =

(
e−t cos 2t −2e−t sin 2t
1
2e
−t sin 2t e−t cos 2t

)(
3

1

)
=

= e−t
(

3 cos 2t− 2 sin 2t
3
2 sin 2t+ cos 2t

)
.
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13. Let

Ψ(t) =


x

(1)
1 (t) · · · x

(n)
1 (t)

...
...

x
(1)
n (t) · · · x

(n)
n (t)

 .

It follows that

Ψ(t0) =


x

(1)
1 (t0) · · · x

(n)
1 (t0)

...
...

x
(1)
n (t0) · · · x

(n)
n (t0)


is a scalar matrix, which is invertible, since the solutions are linearly independent.
Let Ψ−1(t0) = (cij). Then

Ψ(t)Ψ−1(t0) =


x

(1)
1 (t) · · · x

(n)
1 (t)

...
...

x
(1)
n (t) · · · x

(n)
n (t)


c11 · · · c1n

...
...

cn1 · · · cnn

 .

The j-th column of the product matrix is

[
Ψ(t)Ψ−1(t0)

](j)
=

n∑
k= 1

ckj x(k),

which is a solution vector, since it is a linear combination of solutions. Furthermore,
the columns are all linearly independent, since the vectors x(k) are. Hence the
product is a fundamental matrix. Finally, setting t = t0 , Ψ(t0)Ψ−1(t0) =I . This
is precisely the definition of Φ(t).

14. The fundamental matrix Φ(t) for the system

x ′ =

(
1 1
4 1

)
x

is given by

Φ(t) =
1

4

(
2e3t + 2e−t e3t − e−t
4e3t − 4e−t 2e3t + 2e−t

)
.

Direct multiplication results in

Φ(t)Φ(s) =
1

16

(
2e3t + 2e−t e3t − e−t
4e3t − 4e−t 2e3t + 2e−t

)(
2e3s + 2e−s e3s − e−s
4e3s − 4e−s 2e3s + 2e−s

)
=

1

16

(
8(e3t+3s + e−t−s) 4(e3t+3s − e−t−s)
16(e3t+3s − e−t−s) 8(e3t+3s + e−t−s)

)
.

Hence

Φ(t)Φ(s) =
1

4

(
2e3(t+s) + 2e−(t+s) e3(t+s) − e−(t+s)

4e3(t+s) − 4e−(t+s) 2e3(t+s) + 2e−(t+s)

)
= Φ(t+ s).
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15.(a) Let s be arbitrary, but fixed, and t variable. Similar to the argument in
Problem 13, the columns of the matrix Φ(t)Φ(s) are linear combinations of funda-
mental solutions. Hence the columns of Φ(t)Φ(s) are also solution of the system of
equations. Further, setting t = 0 , Φ(0)Φ(s) =I Φ(s) = Φ(s) . That is, Φ(t)Φ(s)
is a solution of the initial value problem Z ′ =AZ, with Z(0) = Φ(s) . Now consider
the change of variable τ = t+ s . Let W(τ) =Z(τ − s). The given initial value
problem can be reformulated as

d

dτ
W = AW , with W(s) = Φ(s) .

Since Φ(t) is a fundamental matrix satisfying Φ ′ =AΦ , with Φ(0) =I, it follows
that

W(τ) =
[
Φ(τ)Φ−1(s)

]
Φ(s) = Φ(τ).

That is, Φ(t+ s) = Φ(τ) =W(τ) =Z(t) = Φ(t)Φ(s) .

(b) Based on part (a), Φ(t)Φ(−t) = Φ(t+ (−t)) = Φ(0) =I. Hence Φ(−t) = Φ−1(t).

(c) It also follows that Φ(t− s) = Φ(t+ (−s)) = Φ(t)Φ(−s) = Φ(t)Φ−1(s).

16. Let A be a diagonal matrix, with A=
[
a1e

(1), a2e
(2), · · · , ane(n)

]
. Note that

for any positive integer k,

Ak =
[
ak1 e(1), ak2 e(2), · · · , akn e(n)

]
.

It follows, from basic matrix algebra, that

I +

m∑
k= 1

Ak t
k

k!
=


∑m
k= 0 a

k
1
tk

k! 0 · · · 0

0
∑m
k= 0 a

k
2
tk

k! · · · 0
...

...
...

0 0 · · ·
∑m
k= 0 a

k
n
tk

k!

 .

It can be shown that the partial sums on the left hand side converge for all t .
Taking the limit as m → ∞ on both sides of the equation, we obtain

eAt =


ea1t 0 · · · 0

0 ea2t · · · 0
...

...
...

0 0 · · · eant

 .

Alternatively, consider the system x ′ =Ax . Since the ODEs are uncoupled, the
vectors x(j) = eajt e(j), j = 1, 2, · · ·n , are a set of linearly independent solutions.
Hence the matrix

x =
[
ea1t e(1), ea2t e(2), · · · , eant e(n)

]
is a fundamental matrix. Finally, since X(0) =I, it follows that[

ea1t e(1), ea2t e(2), · · · , eant e(n)
]

= Φ(t) = eAt .
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17.(a) Let x1 = u and x2 = u ′; then u ′′ = x ′2 . In terms of the new variables, we
have

x ′2 + ω2 x1 = 0

with the initial conditions x1(0) = u0 and x2(0) = v0 . The equivalent first order
system is

x ′1 = x2

x ′2 = −ω2 x1

which can be expressed in the form(
x1

x2

)′
=

(
0 1
−ω2 0

)(
x1

x2

)
;

(
x1(0)
x2(0)

)
=

(
u0

v0

)
.

(b) Setting

A =

(
0 1
−ω2 0

)
,

it is easy to show that

A2 = −ω2 I, A3 = −ω2 A and A4 = ω4 I.

It follows inductively that

A2k = (−1)kω2k I

and

A2k+1 = (−1)kω2k A .

Hence

eAt =

∞∑
k= 0

[
(−1)k

ω2k t2k

(2k)!
I + (−1)k

ω2k t2k+1

(2k + 1)!
A

]

=

[ ∞∑
k= 0

(−1)k
ω2k t2k

(2k)!

]
I +

1

ω

[ ∞∑
k= 0

(−1)k
ω2k+1 t2k+1

(2k + 1)!

]
A

and therefore

eAt = cos ω tI +
1

ω
sin ω tA.

(c) From Equation (28),(
x1

x2

)
=

[
cos ω tI +

1

ω
sin ω tA

](
u0

v0

)
= cos ωt

(
u0

v0

)
+

1

ω
sin ω t

(
v0

−ω2 u0

)
.

18.(a) Assuming that x= φ(t) is a solution, then φ ′ =Aφ, with φ(0) =x0. Integrate
both sides of the equation to obtain

φ(t)− φ(0) =

∫ t

0

Aφ(s)ds .
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Hence

φ(t) = x0 +

∫ t

0

Aφ(s)ds .

(b) Proceed with the iteration

φ(i+1)(t) = x0 +

∫ t

0

Aφ(i)(s)ds .

With φ(0)(t) =x0, and noting that A is a constant matrix,

φ(1)(t) = x0 +

∫ t

0

Ax0ds = x0 + Ax0t .

That is, φ(1)(t) = (I + At)x0.

(c) We then have

φ(2)(t) = x0 +

∫ t

0

A(I + At)x0ds = x0 + Ax0t+ A2x0 t
2

2
= (I + At+ A2 t

2

2
)x0.

Now suppose that

φ(n)(t) = (I + At+ A2 t
2

2
+ · · ·+ An t

n

n!
)x0.

It follows that ∫ t

0

A(I + At+ A2 t
2

2
+ · · ·+ An t

n

n!
)x0ds =

= A(It+ A
t2

2
+ A2 t

3

3!
+ · · ·+ An tn+1

(n+ 1)!
)x0

= (At+ A2 t
2

2
+ A3 t

3

3!
+ · · ·+ An+1 t

n

n!
)x0.

Therefore

φ(n+1)(t) = (I + At+ A2 t
2

2
+ · · ·+ An+1 tn+1

(n+ 1)!
)x0.

By induction, the asserted form of φ(n)(t) is valid for all n ≥ 0 .

(d) Define φ(∞)(t) = limn→∞ φ(n)(t). It can be shown that the limit does exist. In
fact,

φ(∞)(t) = eAtx0.

Term-by-term differentiation results in

d

dt
φ(∞)(t) =

d

dt
(I + At+ A2 t

2

2
+ · · ·+ An t

n

n!
+ · · · )x0

= (A + A2t+ · · ·+ An tn−1

(n− 1)!
+ · · · )x0

= A(I + At+ A2 t
2

2
+ · · ·+ An−1 tn−1

(n− 1)!
+ · · · )x0.
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That is,
d

dt
φ(∞)(t) = Aφ(∞)(t).

Furthermore, φ(∞)(0) =x0. Based on uniqueness of solutions, φ(t) = φ(∞)(t) .

7.8

2.(a)

(b) All of the points on the line x2 = 2x1 are equilibrium points. Solutions starting
at all other points become unbounded.

(c) Setting x= ξ tr results in the algebraic equations(
4− r −2

8 −4− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

The characteristic equation is r2 = 0, with the single root r = 0. Substituting r = 0
reduces the system of equations to 2ξ1 − ξ2 = 0 . Therefore the only eigenvector is
ξ = (1 , 2)T . One solution is

x(1) =

(
1

2

)
,

which is a constant vector. In order to generate a second linearly independent
solution, we must search for a generalized eigenvector. This leads to the system of
equations (

4 −2
8 −4

)(
η1

η2

)
=

(
1

2

)
.

This system also reduces to a single equation, 2η1 − η2 = 1/2 . Setting η1 = k ,
some arbitrary constant, we obtain η2 = 2k − 1/2 . A second solution is

x(2) =

(
1

2

)
t+

(
k

2k − 1/2

)
=

(
1

2

)
t+

(
0

−1/2

)
+ k

(
1

2

)
.
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Note that the last term is a multiple of x(1) and may be dropped. Hence

x(2) =

(
1

2

)
t+

(
0

−1/2

)
.

The general solution is

x = c1

(
1

2

)
+ c2

[(
1

2

)
t+

(
0

−1/2

)]
.

4.(a)

(b) All trajectories converge to the origin.

(c) Solution of the ODE requires analysis of the algebraic equations(
−3− r 5

2
− 5

2 2− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we must have det(A− rI) = r2 + r + 1/4 = 0. The only
root is r = −1/2 , which is an eigenvalue of multiplicity two. Setting r = −1/2
is the coefficient matrix reduces the system to the single equation −ξ1 + ξ2 = 0 .
Hence the corresponding eigenvector is ξ = (1 , 1)T . One solution is

x(1) =

(
1

1

)
e−t/2.

In order to obtain a second linearly independent solution, we find a solution of the
system (

−5/2 5/2
−5/2 5/2

)(
η1

η2

)
=

(
1

1

)
.

There equations reduce to −5η1 + 5η2 = 2 . Set η1 = k , some arbitrary constant.
Then η2 = k + 2/5 . A second solution is

x(2) =

(
1

1

)
te−t/2 +

(
k

k + 2/5

)
e−t/2 =

(
1

1

)
te−t/2 +

(
0

2/5

)
e−t/2 + k

(
1

1

)
e−t/2.

Dropping the last term, the general solution is

x = c1

(
1

1

)
e−t/2 + c2

[(
1

1

)
te−t/2 +

(
0

2/5

)
e−t/2

]
.
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6. The eigensystem is obtained from analysis of the equation−r 1 1
1 −r 1
1 1 −r

ξ1ξ2
ξ3

 =

0
0
0

 .

The characteristic equation of the coefficient matrix is r3 − 3r − 2 = 0 , with roots
r1 = 2 and r2,3 = −1 . Setting r = 2 , we have−2 1 1

1 −2 1
1 1 −2

ξ1ξ2
ξ3

 =

0
0
0

 .

This system is reduced to the equations

ξ1 − ξ3 = 0

ξ2 − ξ3 = 0 .

A corresponding eigenvector is given by ξ(1) = (1 , 1 , 1)T . Setting r = −1 , the
system of equations is reduced to the single equation

ξ1 + ξ2 + ξ3 = 0 .

An eigenvector vector is given by ξ(2) = (1 , 0 ,−1)T . Since the last equation has two
free variables, a third linearly independent eigenvector (associated with r = −1) is

ξ(3) = (0 , 1 ,−1)T . Therefore the general solution may be written as

x = c1

1
1
1

 e2t + c2

 1
0
−1

 e−t + c3

 0
1
−1

 e−t.

7.(a) Solution of the ODE requires analysis of the algebraic equations(
1− r −4

4 −7− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we must have det(A− rI) = r2 + 6r + 9 = 0 . The only
root is r = −3 , which is an eigenvalue of multiplicity two. Substituting r = −3
into the coefficient matrix, the system reduces to the single equation ξ1 − ξ2 = 0 .
Hence the corresponding eigenvector is ξ = (1 , 1)T . One solution is

x(1) =

(
1

1

)
e−3t.

For a second linearly independent solution, we search for a generalized eigenvector.
Its components satisfy (

4 −4
4 −4

)(
η1

η2

)
=

(
1

1

)
,

that is, 4η1 − 4η2 = 1 . Let η2 = k , some arbitrary constant. Then η1 = k + 1/4 .
It follows that a second solution is given by

x(2) =

(
1

1

)
te−3t +

(
k + 1/4

k

)
e−3t =

(
1

1

)
te−3t +

(
1/4

0

)
e−3t + k

(
1

1

)
e−3t.
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Dropping the last term, the general solution is

x = c1

(
1

1

)
e−3t + c2

[(
1

1

)
te−3t +

(
1/4

0

)
e−3t

]
.

Imposing the initial conditions, we require that c1 + c2/4 = 3, c1 = 2, which results
in c1 = 2 and c2 = 4 . Therefore the solution of the IVP is

x =

(
3

2

)
e−3t +

(
4

4

)
te−3t.

(b)

8.(a) Solution of the ODEs is based on the analysis of the algebraic equations(
− 5

2 − r
3
2

− 3
2

1
2 − r

)(
ξ1
ξ2

)
=

(
0

0

)
.

The characteristic equation is r2 + 2 r + 1 = 0 , with a single root r = −1 . Setting
r = −1, the two equations reduce to −ξ1 + ξ2 = 0. The corresponding eigenvector
is ξ = (1 , 1)T . One solution is

x(1) =

(
1

1

)
e−t.

A second linearly independent solution is obtained by solving the system(
−3/2 3/2
−3/2 3/2

)(
η1

η2

)
=

(
1

1

)
.

The equations reduce to the single equation −3η1 + 3η2 = 2. Let η1 = k. We obtain
η2 = 2/3 + k , and a second linearly independent solution is

x(2) =

(
1

1

)
te−t +

(
k

2/3 + k

)
e−t =

(
1

1

)
te−t +

(
0

2/3

)
e−t + k

(
1

1

)
e−t.

Dropping the last term, the general solution is

x = c1

(
1

1

)
e−t + c2

[(
1

1

)
te−t +

(
0

2/3

)
e−t
]
.
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Imposing the initial conditions, we find that c1 = 3, c1 + 2c2/3 = −1, so that c1 = 3
and c2 = −6 . Therefore the solution of the IVP is

x =

(
3

−1

)
e−t −

(
6

6

)
te−t.

(b)

10.(a) The eigensystem is obtained from analysis of the equation(
3− r 9
−1 −3− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

The characteristic equation is r2 = 0 , with a single root r = 0 . Setting r = 0 ,
the two equations reduce to ξ1 + 3ξ2 = 0. The corresponding eigenvector is ξ =
(−3 , 1)T . Hence one solution is

x(1) =

(
−3

1

)
,

which is a constant vector. A second linearly independent solution is obtained from
the system (

3 9
−1 −3

)(
η1

η2

)
=

(
−3

1

)
.

The equations reduce to the single equation η1 + 3η2 = −1 . Let η2 = k. We obtain
η1 = −1− 3k , and a second linearly independent solution is

x(2) =

(
−3

1

)
t+

(
−1− 3k

k

)
=

(
−3

1

)
t+

(
−1

0

)
+ k

(
−3

1

)
.

Dropping the last term, the general solution is

x = c1

(
−3

1

)
+ c2

[(
−3

1

)
t+

(
−1

0

)]
.

Imposing the initial conditions, we require that −3c1 − c2 = 2, c1 = 4, which results
in c1 = 4 and c2 = −14 . Therefore the solution of the IVP is

x =

(
2

4

)
− 14

(
−3

1

)
t.
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(b)

13. Setting x= ξ tr results in the algebraic equations(
3− r −4

1 −1− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

The characteristic equation is r2 − 2r + 1 = 0 , with a single root of r1,2 = 1 . With
r = 1 , the system reduces to a single equation ξ1 − 2 ξ2 = 0. An eigenvector is given
by ξ = (2 , 1)T . Hence one solution is

x(1) =

(
2

1

)
t .

In order to find a second linearly independent solution, we search for a generalized
eigenvector whose components satisfy(

2 −4
1 −2

)(
η1

η2

)
=

(
2

1

)
.

These equations reduce to η1 − 2 η2 = 1 . Let η2 = k , some arbitrary constant.
Then η1 = 1 + 2k . (Before proceeding, note that if we set u = ln t, the original
equation is transformed into a constant coefficient equation with independent vari-
able u. Recall that a second solution is obtained by multiplication of the first
solution by the factor u. This implies that we must multiply first solution by a
factor of ln t.) Hence a second linearly independent solution is

x(2) =

(
2

1

)
t ln t+

(
1 + 2k

k

)
t =

(
2

1

)
t ln t+

(
1

0

)
t+ k

(
2

1

)
t.

Dropping the last term, the general solution is

x = c1

(
2

1

)
t+ c2

[(
2

1

)
t ln t+

(
1

0

)
t

]
.

16.(a) Using the result in Problem 15, the eigenvalues are

r1,2 = − 1

2RC
±
√
L2 − 4R2CL

2RCL
.

The discriminant vanishes when L = 4R2C.



7.8 321

(b) The system of differential equations is

d

dt

(
I

V

)
=

(
0 1

4
−1 −1

)(
I

V

)
.

The associated eigenvalue problem is(
−r 1

4
−1 −1− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

The characteristic equation is r2 + r + 1/4 = 0 , with a single root of r1,2 = −1/2 .
Setting r = −1/2 , the algebraic equations reduce to 2ξ1 + ξ2 = 0. An eigenvector
is given by ξ = (1 ,−2)T . Hence one solution is(

I

V

)(1)

=

(
1

−2

)
e−t/2 .

A second solution is obtained from a generalized eigenvector whose components
satisfy (

1
2

1
4

−1 − 1
2

)(
η1

η2

)
=

(
1

−2

)
.

It follows that η1 = k and η2 = 4− 2k . A second linearly independent solution is(
I

V

)(2)

=

(
1

−2

)
t e−t/2 +

(
k

4− 2k

)
e−t/2 =

(
1

−2

)
t e−t/2 +

(
0

4

)
e−t/2 + k

(
1

−2

)
e−t/2.

Dropping the last term, the general solution is(
I

V

)
= c1

(
1

−2

)
e−t/2 + c2

[(
1

−2

)
t e−t/2 +

(
0

4

)
e−t/2

]
.

Imposing the initial conditions, we require that c1 = 1, −2c1 + 4c2 = 2, which re-
sults in c1 = 1 and c2 = 1 . Therefore the solution of the IVP is(

I

V

)
=

(
1

2

)
e−t/2 +

(
1

−2

)
te−t/2.

19.(a) The eigensystem is obtained from analysis of the equation5− r −3 −2
8 −5− r −4
−4 3 3− r

ξ1ξ2
ξ3

 =

0
0
0

 .

The characteristic equation of the coefficient matrix is r3 − 3r2 + 3r − 1 = 0 , with
a single root of multiplicity three, r = 1 . Setting r = 1 , we have 4 −3 −2

8 −6 −4
−4 3 2

ξ1ξ2
ξ3

 =

0
0
0

 .

The system of algebraic equations reduces to a single equation

4ξ1 − 3ξ2 − 2ξ3 = 0 .
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An eigenvector vector is given by ξ(1) = (1 , 0 , 2)T . Since the last equation has two
free variables, a second linearly independent eigenvector (associated with r = 1) is

ξ(2) = (0 , 2 ,−3)T . Therefore two solutions are obtained as

x(1) =

1
0
2

 et and x(2) =

 0
2
−3

 et.

(b) It follows directly that x ′ = ξtet + ξet + ηet . Hence the coefficient vectors
must satisfy ξtet + ξet + ηet =Aξtet+Aηet. Rearranging the terms, we have

ξet = (A− I)ξtet + (A− I)ηet.

Given an eigenvector ξ , it follows that (A− I)ξ = 0 and (A− I)η = ξ .

(c) Clearly, (A− I)2η = (A− I)(A− I)η = (A− I)ξ = 0 . Also, 4 −3 −2
8 −6 −4
−4 3 2

 4 −3 −2
8 −6 −4
−4 3 2

 =

0 0 0
0 0 0
0 0 0


(d) We get that

ξ = (A− I)η =

 4 −3 −2
8 −6 −4
−4 3 2

0
0
1

 =

−2
−4
2

 .

This is an eigenvector:  5 −3 −2
8 −5 −4
−4 3 3

−2
−4
2

 =

−2
−4
2

 .

(e) Given the three linearly independent solutions, a fundamental matrix is given
by

Ψ(t) =

 et 0 −2t et

0 2et −4t et

2et −3et 2t et + et

 .

(f) We construct the transformation matrix

T =

1 −2 0
0 −4 0
2 2 1

 ,

with inverse

T−1 =

 1 −1/2 0
0 −1/4 0
−2 3/2 1

 .

The Jordan form of the matrix A is

J = T−1AT =

1 0 0
0 1 1
0 0 1

 .
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21.(a) Direct multiplication results in

J2 =

λ2 0 0
0 λ2 2λ
0 0 λ2

 , J3 =

λ3 0 0
0 λ3 3λ2

0 0 λ3

 , J4 =

λ4 0 0
0 λ4 4λ3

0 0 λ4

 .

(b) Suppose that

Jn =

λn 0 0
0 λn nλn−1

0 0 λn

 .

Then

Jn+1 =

λn 0 0
0 λn nλn−1

0 0 λn

λ 0 0
0 λ 1
0 0 λ

 =

λ · λn 0 0
0 λ · λn λn + nλ · λn−1

0 0 λ · λn

 .

Hence the result follows by mathematical induction.

(c) Note that J is block diagonal. Hence each block may be exponentiated. Using
the result in Problem 20,

eJt =

eλt 0 0
0 eλt teλt

0 0 eλt

 .

(d) Setting λ = 1 , and using the transformation matrix T in Problem 19,

TeJt =

1 2 0
0 4 0
2 −2 −1

et 0 0
0 et tet

0 0 et

 =

 et 2et 2t et

0 4et 4t et

2et −2et −2t et − et

 .

Based on the form of J, eJt is the fundamental matrix associated with the solutions

y(1) = ξ(1)et, y(2) = (2ξ(1) + 2ξ(2))et and y(3) = (2ξ(1) + 2ξ(2))tet + ηet.

Hence the resulting matrix is the fundamental matrix associated with the solution
set {

ξ(1)et , (2ξ(1) + 2ξ(2))et, (2ξ(1) + 2ξ(2))tet + ηet
}

,

as opposed to the solution set in Problem 19, given by{
ξ(1)et , ξ(2)et, (2ξ(1) + 2ξ(2))tet + ηet

}
.

22.(a) Direct multiplication results in

J2 =

λ2 2λ 1
0 λ2 2λ
0 0 λ2

 , J3 =

λ3 3λ2 3λ
0 λ3 3λ2

0 0 λ3

 , J4 =

λ4 4λ3 6λ2

0 λ4 4λ3

0 0 λ4

 .
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(b) Suppose that

Jn =

λn nλn−1 n(n−1)
2 λn−2

0 λn nλn−1

0 0 λn

 .

Then

Jn+1 =

λn nλn−1 n(n−1)
2 λn−2

0 λn nλn−1

0 0 λn

λ 1 0
0 λ 1
0 0 λ


=

λ · λn λn + nλ · λn−1 nλn−1 + n(n−1)
2 λ · λn−2

0 λ · λn λn + nλ · λn−1

0 0 λ · λn

 .

The result follows by noting that

nλn−1 +
n(n− 1)

2
λ · λn−2 =

[
n+

n(n− 1)

2

]
λn−1 =

n2 + n

2
λn−1.

(c) We first observe that

∞∑
n= 0

λn
tn

n!
= eλt

∞∑
n= 0

nλn−1 t
n

n!
= t

∞∑
n= 1

λn−1 tn−1

(n− 1)!
= t eλt

∞∑
n= 0

n(n− 1)

2
λn−2 t

n

n!
=
t2

2

∞∑
n= 2

λn−2 tn−2

(n− 2)!
=
t2

2
eλt.

Therefore

eJt =

eλt teλt t2

2 e
λt

0 eλt teλt

0 0 eλt

 .

(d) Setting λ = 2 , and using the transformation matrix T in Problem 18,

TeJt =

 0 1 2
1 1 0
−1 0 3

e2t te2t t2

2 e
2t

0 e2t te2t

0 0 e2t

 =

 0 e2t te2t + 2e2t

e2t te2t + e2t t2

2 e
2t + te2t

−e2t −te2t − t
2

2 e
2t + 3e2t

 .

7.9

5. As shown in Problem 2, Section 7.8, the general solution of the homogeneous
equation is

xc = c1

(
1

2

)
+ c2

(
t

2t− 1
2

)
.
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An associated fundamental matrix is

Ψ(t) =

(
1 t
2 2t− 1

2

)
.

The inverse of the fundamental matrix is easily determined as

Ψ−1(t) =

(
4t− 3 −2t+ 2
8t− 8 −4t+ 5

)
.

We can now compute

Ψ−1(t)g(t) = − 1

t3

(
2t2 + 4t− 1

−2t− 4

)
,

and ∫
Ψ−1(t)g(t) dt =

(
− 1

2 t
−2 + 4t−1 − 2 ln t

−2t−2 − 2t−1

)
.

Finally,

v(t) = Ψ(t)

∫
Ψ−1(t)g(t) dt,

where

v1(t) = −1

2
t−2 + 2t−1 − 2 ln t− 2, v2(t) = 5t−1 − 4 ln t− 4 .

Note that the vector (2 , 4)T is a multiple of one of the fundamental solutions.
Hence we can write the general solution as

x = c1

(
1

2

)
+ c2

(
t

2t− 1
2

)
− 1

t2

(
1/2

0

)
+

1

t

(
2

5

)
− 2 ln t

(
1

2

)
.

6. The eigenvalues of the coefficient matrix are r1 = 0 and r2 = −5 . It follows
that the solution of the homogeneous equation is

xc = c1

(
1

2

)
+ c2

(
−2e−5t

e−5t

)
.

The coefficient matrix is symmetric. Hence the system is diagonalizable. Using the
normalized eigenvectors as columns, the transformation matrix, and its inverse, are

T =
1√
5

(
1 −2
2 1

)
T−1 =

1√
5

(
1 2
−2 1

)
.

Setting x=Ty, and h(t) =T−1g(t), the transformed system is given, in scalar form,
as

y ′1 =
5 + 8t√

5 t

y ′2 = −5y2 +
4√
5
.

The solutions are readily obtained as

y1(t) =
√

5 ln t+
8√
5
t+ c1 and y2(t) = c2 e

−5t +
4

5
√

5
.
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Transforming back to the original variables, we have x=Ty, with

x =
1√
5

(
1 −2
2 1

)(
y1(t)

y2(t)

)
=

1√
5

(
1

2

)
y1(t) +

1√
5

(
−2

1

)
y2(t).

Hence the general solution is

x = k1

(
1

2

)
+ k 2

(
−2e−5t

e−5t

)
+

(
1

2

)
ln t+

8

5

(
1

2

)
t+

4

25

(
−2

1

)
.

7. The solution of the homogeneous equation is

xc = c1

(
e−t

−2e−t

)
+ c2

(
e3t

2e3t

)
.

Based on the simple form of the right hand side, we use the method of undetermined
coefficients. Set v=a et. Substitution into the ODE yields(

a1

a2

)
et =

(
1 1
4 1

)(
a1

a2

)
et +

(
2

−1

)
et.

In scalar form, after canceling the exponential, we have

a1 = a1 + a2 + 2

a2 = 4a1 + a2 − 1 ,

with a1 = 1/4 and a2 = −2 . Hence the particular solution is

v =

(
1/4

−2

)
et,

so that the general solution is

x = c1

(
e−t

−2e−t

)
+ c2

(
e3t

2e3t

)
+

1

4

(
et

−8et

)
.

9. Note that the coefficient matrix is symmetric. Hence the system is diagonalizable.
The eigenvalues and eigenvectors are given by

r1 = −1

2
, ξ(1) =

(
1

1

)
and r2 = −2 , ξ(2) =

(
1

−1

)
.

Using the normalized eigenvectors as columns, the transformation matrix, and its
inverse, are

T =
1√
2

(
1 1
1 −1

)
T−1 =

1√
2

(
1 1
1 −1

)
.

Setting x=Ty, and h(t) =T−1g(t) , the transformed system is given, in scalar form,
as

y ′1 = −1

2
y1 +

√
2 t+

1√
2
et

y ′2 = −2y2 +
√

2 t− 1√
2
et .
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Using any elementary method for first order linear equations, the solutions are

y1(t) = k1e
−t/2 +

√
2

3
et − 4

√
2 + 2

√
2 t

y2(t) = k 2e
−2t − 1

3
√

2
et − 1

2
√

2
+

1√
2
t .

Transforming back to the original variables, x=Ty, the general solution is

x = c1

(
1

1

)
e−t/2 + c2

(
1

−1

)
e−2t − 1

4

(
17

15

)
+

1

2

(
5

3

)
t+

1

6

(
1

3

)
et.

10. Since the coefficient matrix is symmetric, the differential equations can be
decoupled. The eigenvalues and eigenvectors are given by

r1 = −4 , ξ(1) =

(√
2

−1

)
and r2 = −1 , ξ(2) =

(
1√
2

)
.

Using the normalized eigenvectors as columns, the transformation matrix, and its
inverse, are

T =
1√
3

(√
2 1

−1
√

2

)
T−1 =

1√
3

(√
2 −1

1
√

2

)
.

Setting x=Ty, and h(t) =T−1g(t) , the transformed system is given, in scalar form,
as

y ′1 = −4y1 +
1√
3

(1 +
√

2)e−t

y ′2 = −y2 +
1√
3

(1−
√

2) e−t .

The solutions are easily obtained as

y1(t) = k1e
−4t +

1

3
√

3
(1 +

√
2)e−t, y2(t) = k 2e

−t +
1√
3

(1−
√

2 )te−t.

Transforming back to the original variables, the general solution is

x = c1

(√
2

−1

)
e−4t + c2

(
1√
2

)
e−t +

1

9

(
2 +
√

2 + 3
√

3

3
√

6−
√

2− 1

)
e−t +

1

3

(
1−
√

2√
2− 2

)
te−t.

Note that (
2 +
√

2 + 3
√

3

3
√

6−
√

2− 1

)
=

(
2 +
√

2

−
√

2− 1

)
+ 3
√

3

(
1√
2

)
.

The second vector is an eigenvector, hence the solution may be written as

x = c1

(√
2

−1

)
e−4t + c2

(
1√
2

)
e−t +

1

9

(
2 +
√

2

−
√

2− 1

)
e−t +

1

3

(
1−
√

2√
2− 2

)
te−t.

11. Based on the solution of Problem 3 of Section 7.6, a fundamental matrix is
given by

Ψ(t) =

(
5 cos t 5 sin t

2 cos t+ sin t − cos t+ 2 sin t

)
.
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The inverse of the fundamental matrix is easily determined as

Ψ−1(t) =
1

5

(
cos t− 2 sin t 5 sin t
2 cos t+ sin t −5 cos t

)
.

It follows that

Ψ−1(t)g(t) =

(
cos t sin t

− cos2 t

)
,

and ∫
Ψ−1(t)g(t) dt =

( 1
2 sin2 t

− 1
2 cos t sin t− 1

2 t

)
.

A particular solution is constructed as

v(t) = Ψ(t)

∫
Ψ−1(t)g(t) dt,

where

v1(t) =
5

2
cos t sin t− cos2 t+

5

2
t+ 1, v2(t) = cos t sin t− 1

2
cos2 t+ t+

1

2
.

Hence the general solution is

x = c1

(
5 cos t

2 cos t + sin t

)
+ c2

(
5 sin t

− cos t+ 2 sin t

)
−

− t sin t

(
5/2

1

)
+ t cos t

(
0

1/2

)
− cos t

(
5/2

1

)
.

13.(a) As shown in Problem 25 of Section 7.6, the solution of the homogeneous
system is (

x
(c)
1

x
(c)
2

)
= c1e

−t/2
(

cos(t/2)

4 sin(t/2)

)
+ c2e

−t/2
(

sin(t/2)

−4 cos(t/2)

)
.

Therefore the associated fundamental matrix is given by

Ψ(t) = e−t/2
(

cos(t/2) sin(t/2)
4 sin(t/2) −4 cos(t/2)

)
.

(b) The inverse of the fundamental matrix is

Ψ−1(t) =
et/2

4

(
4 cos(t/2) sin(t/2)
4 sin(t/2) − cos(t/2)

)
.

It follows that

Ψ−1(t)g(t) =
1

2

(
cos(t/2)

sin(t/2)

)
,

and ∫
Ψ−1(t)g(t) dt =

(
sin(t/2)

− cos(t/2)

)
.

A particular solution is constructed as

v(t) = Ψ(t)

∫
Ψ−1(t)g(t) dt,



7.9 329

where v1(t) = 0, v2(t) = 4 e−t/2. Hence the general solution is

x = c1e
−t/2

(
cos(t/2)

4 sin(t/2)

)
+ c2e

−t/2
(

sin(t/2)

−4 cos(t/2)

)
+ 4 e−t/2

(
0

1

)
.

Imposing the initial conditions, we require that c1 = 0, −4c2 + 4 = 0, which results
in c1 = 0 and c2 = 1 . Therefore the solution of the IVP is

x = e−t/2
(

sin(t/2)

4− 4 cos(t/2)

)
.

15. The general solution of the homogeneous problem is(
x

(c)
1

x
(c)
2

)
= c1

(
1

2

)
t−1 + c2

(
2

1

)
t2,

which can be verified by substitution into the system of ODEs. Since the vectors
are linearly independent, a fundamental matrix is given by

Ψ(t) =

(
t−1 2t2

2t−1 t2

)
.

The inverse of the fundamental matrix is

Ψ−1(t) =
1

3

(
−t 2t

2t−2 −t−2

)
.

Dividing both equations by t, we obtain

g(t) =

(
−2

t3 − t−1

)
.

Proceeding with the method of variation of parameters,

Ψ−1(t)g(t) =

( 2
3 t

4 + 2
3 t−

2
3

− 1
3 t−

4
3 t
−2 + 1

3 t
−3

)
,

and ∫
Ψ−1(t)g(t) dt =

( 2
15 t

5 + 1
3 t

2 − 2
3 t

− 1
6 t

2 + 4
3 t
−1 − 1

6 t
−2

)
.

Hence a particular solution is obtained as

v =

(− 1
5 t

4 + 3t− 1
1
10 t

4 + 2t− 3
2

)
.

The general solution is

x = c1

(
1

2

)
t−1 + c2

(
2

1

)
t2 +

1

10

(
−2

1

)
t4 +

(
3

2

)
t−
(

1

3/2

)
.

16. Based on the hypotheses,

φ ′(t) = P(t)φ(t) + g(t) and v ′(t) = P(t)v(t) + g(t) .

Subtracting the two equations results in

φ ′(t)− v ′(t) = P(t)φ(t)−P(t)v(t) ,
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that is,

[φ(t)− v(t)]
′

= P(t) [φ(t)− v(t)] .

It follows that φ(t)−v(t) is a solution of the homogeneous equation. According to
Theorem 7.4.2,

φ(t)− v(t) = c1x
(1)(t) + c2x

(2)(t) + · · ·+ cnx(n)(t).

Hence

φ(t) = u(t) + v(t),

in which u(t) is the general solution of the homogeneous problem.

17.(a) Setting t0 = 0 in Equation (34),

x = Φ(t)x0 + Φ(t)

∫ t

0

Φ−1(s)g(s)ds = Φ(t)x0 +

∫ t

0

Φ(t)Φ−1(s)g(s)ds .

It was shown in Problem 15(c) in Section 7.7 that Φ(t)Φ−1(s) = Φ(t− s). There-
fore

x = Φ(t)x0 +

∫ t

0

Φ(t− s)g(s)ds .

(b) The principal fundamental matrix is identified as Φ(t) = eAt. Hence

x = eAtx0 +

∫ t

0

eA(t−s)g(s)ds .

In Problem 27 of Section 3.6, the particular solution is given as

y(t) =

∫ t

t0

K(t− s)g(s)ds ,

in which the kernel K(t) depends on the nature of the fundamental solutions.

18. Similarly to Eq.(43), here

(sI−A)X(s) = G(s) +

(
α1

α2

)
,

where

G(s) =

(
2/(s+ 1)

3/s2

)
and sI−A =

(
s+ 2 −1
−1 s+ 2

)
.

The transfer matrix is given by Eq.(46):

(sI−A)−1 =
1

(s+ 1)(s+ 3)

(
s+ 2 1

1 s+ 2

)
.

From these equations we obtain that

X(s) =

(
2(s+2)

(s+1)2(s+3) + 3
s2(s+1)(s+3) + α1(s+2)

(s+1)(s+3) + α2

(s+1)(s+3)
2

(s+1)2(s+3) + 3(s+2)
s2(s+1)(s+3) + α1

(s+1)(s+3) + α2(s+2)
(s+1)(s+3)

)
.
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The inverse Laplace transform gives us that

x(t) =

(
4+α1+α2

2 e−t + −4+3α1−3α2

6 e−3t + t+ te−t − 4
3

2+α1+α2

2 e−t + 4−3α1+3α2

6 e−3t + 2t+ te−t − 5
3

)
,

so α1 and α2 should be chosen so that

4 + α1 + α2

2
= c2 +

1

2
and

−4 + 3α1 − 3α2

6
= c1.

This gives us α1 = (−5 + 6c1 + 6c2)/6 and α2 = −c1 + c2 − 13/6.
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