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C H A P T E R

9

Nonlinear Differential Equations and

Stability

9.1

2.(a) Setting x= ξ ert results in the algebraic equations(
5− r −1

3 1− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we must have det(A− r I) = r2 − 6 r + 8 = 0 . The roots of
the characteristic equation are r1 = 2 and r2 = 4 . For r = 2, the system of equa-
tions reduces to 3ξ1 = ξ2. The corresponding eigenvector is ξ(1) = (1 , 3)T . Substi-
tution of r = 4 results in the single equation ξ1 = ξ2 . A corresponding eigenvector
is ξ(2) = (1 , 1)T .

(b) The eigenvalues are real and positive, hence the critical point is an unstable
node.
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(c,d)

3.(a) Solution of the ODE requires analysis of the algebraic equations(
2− r −1

3 −2− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we must have det(A− r I) = r2 − 1 = 0 . The roots of the
characteristic equation are r1 = 1 and r2 = −1. For r = 1, the system of equations
reduces to ξ1 = ξ2 . The corresponding eigenvector is ξ(1) = (1 , 1)T . Substitution
of r = −1 results in the single equation 3 ξ1 − ξ2 = 0 . A corresponding eigenvector
is ξ(2) = (1 , 3)T .

(b) The eigenvalues are real, with r1 r2 < 0 . Hence the critical point is an unstable
saddle point.

(c,d)

5.(a) The characteristic equation is given by∣∣∣∣1− r −5
1 −3− r

∣∣∣∣ = r2 + 2 r + 2 = 0 .

The equation has complex roots r1 = −1 + i and r2 = −1− i. For r = −1 + i,
the components of the solution vector must satisfy ξ1 − (2 + i)ξ2 = 0 . Thus the

corresponding eigenvector is ξ(1) = (2 + i , 1)T . Substitution of r = −1− i results

in the single equation ξ1 − (2− i)ξ2 = 0 . A corresponding eigenvector is ξ(2) =
(2− i , 1)T .
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(b) The eigenvalues are complex conjugates, with negative real part. Hence the
origin is an asymptotically stable spiral.

(c,d)

6.(a) Solution of the ODEs is based on the analysis of the algebraic equations(
2− r −5

1 −2− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we require that det(A− r I) = r2 + 1 = 0. The roots of the
characteristic equation are r = ±i . Setting r = i , the equations are equivalent to
ξ1 − (2 + i)ξ2 = 0 . The eigenvectors are ξ(1) = (2 + i , 1)T and ξ(2) = (2− i , 1)T .

(b) The eigenvalues are purely imaginary. Hence the critical point is a stable center.

(c,d)

8.(a) The characteristic equation is given by∣∣∣∣−1− r −1
0 −1/4− r

∣∣∣∣ = (r + 1)(r + 1/4) = 0 ,

with roots r1 = −1 and r2 = −1/4. For r = −1, the components of the solution

vector must satisfy ξ2 = 0 . Thus the corresponding eigenvector is ξ(1) = (1 , 0)T .
Substitution of r = −1/4 results in the single equation 3ξ1/4 + ξ2 = 0 . A corre-

sponding eigenvector is ξ(2) = (4 ,−3)T .
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(b) The eigenvalues are real and both negative. Hence the critical point is an
asymptotically stable node.

(c,d)

9.(a) Solution of the ODEs is based on the analysis of the algebraic equations(
3− r −4

1 −1− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we require that det(A− r I) = r2 − 2 r + 1 = 0. The single
root of the characteristic equation is r = 1 . Setting r = 1 , the components of
the solution vector must satisfy ξ1 − 2 ξ2 = 0 . A corresponding eigenvector is ξ =
(2 , 1)T .

(b) Since there is only one linearly independent eigenvector, the critical point is an
unstable, improper node.

(c,d)

11.(a) The characteristic equation is (r + 1)2 = 0 , with double root r = −1 . It is

easy to see that the two linearly independent eigenvectors are ξ(1) = (1 , 0)T and

ξ(2) = (0 , 1)T .

(b) Since there are two linearly independent eigenvectors, the critical point is an
asymptotically stable proper node.
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(c,d)

12.(a) Setting x= ξ ert results in the algebraic equations(
2− r −5/2
9/5 −1− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we require that det(A− r I) = r2 − r + 5/2 = 0. The roots
of the characteristic equation are r = 1/2 ± 3i/2 . Substituting r = 1/2 − 3i/2 ,
the equations reduce to (3 + 3i)ξ1 − 5 ξ2 = 0 . Therefore the two eigenvectors are

ξ(1) = (5 , 3 + 3i)T and ξ(2) = (5 , 3− 3i)T .

(b) Since the eigenvalues are complex, with positive real part, the critical point is
an unstable spiral.

(c,d)

14. Setting x ′ = 0 , that is, (
−2 1
1 −2

)
x =

(
2

−1

)
,

we find that the critical point is x0 = (−1, 0)T . With the change of dependent
variable, x=x0+u , the differential equation can be written as

du

dt
=

(
−2 1
1 −2

)
u.
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The critical point for the transformed equation is the origin. Setting u= ξ ert results
in the algebraic equations(

−2− r 1
1 −2− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we require that det(A− r I) = r2 + 4r + 3 = 0. The roots
of the characteristic equation are r = −3 , −1 . Hence the critical point is an
asymptotically stable node.

15. Setting x ′ = 0 , that is, (
−1 −1
2 −1

)
x =

(
1

−5

)
,

we find that the critical point is x0 = (−2, 1)T . With the change of dependent
variable, x=x0+u , the differential equation can be written as

du

dt
=

(
−1 −1
2 −1

)
u.

The characteristic equation is det(A− r I) = r2 + 2r + 3 = 0, with complex conju-
gate roots r = −1 ± i

√
2 . Since the real parts of the eigenvalues are negative, the

critical point is an asymptotically stable spiral.

16. The critical point x0 satisfies the system of equations(
0 −β
δ 0

)
x =

(
−α
γ

)
.

It follows that x0 = γ/δ and y0 = α/β . Using the transformation, x=x0+u , the
differential equation can be written as

du

dt
=

(
0 −β
δ 0

)
u.

The characteristic equation is det(A− r I) = r2 + β δ = 0. Since β δ > 0 , the roots
are purely imaginary, with r = ± i

√
βδ . Hence the critical point is a stable center.

21.(a) If q > 0 and p < 0, then the roots are either complex conjugates with negative
real parts, or both real and negative.

(b) If q > 0 and p = 0, then the roots are purely imaginary.

(c) If q < 0, then the roots are real, with r1 · r2 < 0. If p > 0, then either the roots
are real, with r1 > 0 or the roots are complex conjugates with positive real parts.
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9.2

2. The differential equations can be combined to obtain a related ODE

dy

dx
= −2y

x
.

The equation is separable, with

dy

y
= −2 dx

x
.

The solution is given by y = C x−2. Note that the system is uncoupled, and hence
we also have x = x0e

−t and y = y0e
2t. Matching the initial conditions, for the

first case we obtain x(t) = 4e−t and y(t) = 2e2t, for the second case we obtain
x(t) = 4e−t and y(t) = 0.

In order to determine the direction of motion along the trajectories, observe that
for positive initial conditions, x will decrease, whereas y will increase.

4. The trajectories of the system satisfy the ODE

dy

dx
= − bx

ay
.

The equation is separable, with ay dy = −bx dx. Hence the trajectories are given
by b x2 + a y2 = C2, in which C is arbitrary. Evidently, the trajectories are ellipses.
Invoking the initial condition, we find that C2 = ab . The system of ODEs can also
be written as

dx

dt
=

(
0 a
−b 0

)
x.

Using the methods in Chapter 7, it is easy to show that

x =
√
a cos

√
ab t, y = −

√
b sin

√
ab t.
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Note that for positive initial conditions, x will increase, whereas y will decrease.

6.(a) The critical points are solutions of the equations

1 + 2y = 0

1− 3x2 = 0 .

There are two critical points, (−1/
√

3 ,−1/2) and (1/
√

3 ,−1/2).

(b)

(c) Locally, the trajectories near the point (−1/
√

3 ,−1/2) resemble the behavior
near a saddle. Hence the critical point is unstable. Near the point (1/

√
3 ,−1/2),

the solutions are periodic. Therefore the second critical point is stable.

7.(a) The critical points are solutions of the equations

2x− x2 − xy = 0

3y − 2y2 − 3xy = 0 .

There are four critical points, (0, 0), (0, 3/2), (2, 0), and (−1, 3).
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(b)

(c) Examining the phase plot we can conclude that (0, 0) is an unstable node,
(0, 3/2) is a saddle point (hence unstable), (2, 0) is an asymptotically stable node,
and (−1, 3) is an asymptotically stable node.

(d) Again, the phase plot shows us that the basin of (2, 0) is the (open) first and
fourth quadrants and the basin of (−1, 3) is the (open) second quadrant.

8.(a) The critical points are solutions of the equations

−(2 + y)(x+ y) = 0

−y(1− x) = 0 .

There are three critical points, (0, 0), (1,−1), and (1,−2).

(b)

(c) Examining the phase plot we can conclude that (0, 0) is an asymptotically stable
node, (1,−1) is a saddle point (hence unstable), and (1,−2) is an asymptotically
stable spiral.

(d) The phase plot suggests that the basin of (0, 0) is the whole plane except for a
subset of the fourth quadrant that is the basin of (1,−2).
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9.(a) The critical points are given by the solution set of the equations

y(2− x− y) = 0

−x− y − 2xy = 0 .

Clearly, (0 , 0) is a critical point. If x = 2− y , then it follows that y(y − 2) = 1 .
The additional critical points are (1−

√
2 , 1 +

√
2 ) and (1 +

√
2 , 1−

√
2 ).

(b)

(c) The behavior near the origin is that of a stable spiral. Hence the point (0 , 0)
is asymptotically stable. At the critical point (1−

√
2 , 1 +

√
2 ), the trajectories

resemble those near a saddle. Hence the critical point is unstable. Near the point
(1 +

√
2 , 1−

√
2 ), the trajectories resemble those near a saddle. Hence the critical

point is also unstable.

(d) Observing the direction field and the trajectories in (b), we can see that the
basin of attraction of the origin is a complicated region including portions of all
four quadrants.

10.(a) The critical points are solutions of the equations

(2 + x)(y − x) = 0

y(2 + x− x2) = 0 .

The origin is evidently a critical point. If x = −2 , then y = 0 . If x = y , then either
y = 0 or x = y = −1 or x = y = 2 . Hence the other critical points are (−2 , 0),
(−1 ,−1) and (2 , 2).
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(b)

(c) Based on the global phase portrait, the critical points (0 , 0) and (−2 , 0) have
the characteristics of a saddle. Hence these points are unstable. The behavior near
the remaining two critical points resembles those near a stable spiral. Hence the
critical points (−1 ,−1) and (2 , 2) are asymptotically stable.

(d) The basin of (2, 2) is the part of the upper half plane where x > −2, the basin
of (−1,−1) is the part of the lower half plane where x > −2.

11.(a) The critical points are given by the solution set of the equations

x(1− 2y) = 0

y − x2 − y2 = 0 .

If x = 0 , then either y = 0 or y = 1 . If y = 1/2 , then x = ±1/2 . Hence the critical
points are at (0 , 0), (0 , 1), (−1/2 , 1/2) and (1/2 , 1/2).

(b)

(c) The trajectories near the critical points (−1/2 , 1/2) and (1/2 , 1/2) are closed
curves. Hence the critical points have the characteristics of a center, which is
stable. The trajectories near the critical points (0 , 0) and (0, 1) resemble those
near a saddle. Hence these critical points are unstable.
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(d) As the two stable critical points are centers, they have no basins of attraction.
Trajectories near the critical points are ovals around those points.

13.(a) The critical points are solutions of the equations

(2 + x)(y − x) = 0

(4− x)(y + x) = 0 .

If y = x , then either x = y = 0 or x = y = 4 . If x = −2 , then y = 2 . If x = −y ,
then y = 2 or y = 0 . Hence the critical points are at (0 , 0), (4 , 4) and (−2 , 2).

(b)

(c) The critical point at (4 , 4) is evidently a stable spiral, which is asymptotically
stable. Closer examination of the critical point at (0 , 0) reveals that it is a saddle,
which is unstable. The trajectories near the critical point (−2 , 2) resemble those
near an unstable node.

(d) The basin of attraction for (4, 4) consists of the points for which x > −2 and
which lie over a curve (inferred from part (b)) passing through the origin and
(−2, 2).

14.(a) The critical points are given by the solution set of the equations

(2− x)(y − x) = 0

y(2− x− x2) = 0 .

If x = 2, then y = 0. If y = 0, then x = 0. Also, x = 1 and x = −2 are roots of the
second equation, and then y = x from the first equation. Hence the critical points
are at (2 , 0), (0 , 0), (1 , 1) and (−2 ,−2).
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(b)

(c) The critical points (0, 0) and (2, 0) are saddles, hence unstable. The other two
critical points are asymptotically stable spirals.

(d) The basin of (1, 1) is the part of the upper half plane where x < 2 (so all points
(x, y) such that x < 2 and y > 0), the basin of (−2,−2) is all points (x, y) such that
x < 2 and y < 0.

15.(a) The critical points are given by the solution set of the equations

x(2− x− y) = 0

−x+ 3y − 2xy = 0 .

If x = 0, then y = 0. The other critical points can be found by setting y = 2− x
and substituting this into the second equation. This gives us x = 3 and x = 1.
Hence the critical points are at (0 , 0), (1 , 1) and (3 ,−1).

(b)

(c) The critical point (1, 1) is a saddle, hence unstable. (0, 0) is an unstable node
and (3,−1) is an asymptotically stable spiral.

(d) The basin of (3,−1) consists of all points (x, y) for which x > 0 and x > y.
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16.(a) The critical points are given by the solution set of the equations

x(2− x− y) = 0

(1− y)(2 + x) = 0 .

If x = 0, then y = 1. Also, when x = −2, then y = 4. The last critical point is
given by y = 1, x = 1. Hence the critical points are at (0 , 1), (1 , 1) and (−2 , 4).

(b)

(c) The critical point (0, 1) is a saddle, hence unstable. (−2, 4) is an unstable spiral
and (1, 1) is an asymptotically stable node.

(d) The basin of (1, 1) is the right half plane, i.e. all the points (x, y) for which
x > 0.

18.(a) The trajectories are solutions of the differential equation

dy

dx
= −4x

y
,

which can also be written as 4x dx+ y dy = 0 . Integrating, we obtain

4x2 + y2 = C2.

Hence the trajectories are ellipses.

(b)
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Based on the differential equations, the direction of motion on each trajectory is
clockwise.

19.(a) The trajectories of the system satisfy the ODE

dy

dx
=

2x+ y

y
,

which can also be written as (2x+ y)dx− ydy = 0 . This differential equation is
homogeneous. Setting y = x v(x), we obtain

v + x
dv

dx
=

2

v
+ 1 ,

that is,

x
dv

dx
=

2 + v − v2

v
.

The resulting ODE is separable, with solution x3(v + 1)(v − 2)2 = C. Reverting
back to the original variables, the trajectories are level curves of

H(x , y) = (x+ y)(y − 2x)2.

(b)

The origin is a saddle. Along the line y = 2x , solutions increase without bound.
Along the line y = −x , solutions converge toward the origin.

20.(a) The trajectories are solutions of the differential equation

dy

dx
=
x+ y

x− y
,

which is homogeneous. Setting y = x v(x), we obtain

v + x
dv

dx
=
x+ xv

x− xv
,

that is,

x
dv

dx
=

1 + v2

1− v
.
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The resulting ODE is separable, with solution

arctan(v) = ln |x|
√

1 + v2 .

Reverting back to the original variables, the trajectories are level curves of

H(x , y) = arctan(y/x)− ln
√
x2 + y2 .

(b)

The origin is a stable spiral.

22.(a) The trajectories are solutions of the differential equation

dy

dx
=
−2xy2 + 6xy

2x2y − 3x2 − 4y
,

which can also be written as (2xy2 − 6xy)dx+ (2x2y − 3x2 − 4y)dy = 0 . The re-
sulting ODE is exact, with

∂H

∂x
= 2xy2 − 6xy and

∂H

∂y
= 2x2y − 3x2 − 4y .

Integrating the first equation, we find that H(x , y) = x2y2 − 3x2y + f(y). It fol-
lows that

∂H

∂y
= 2x2y − 3x2 + f ′(y).

Comparing the two partial derivatives, we obtain f(y) = −2y2 + c . Hence

H(x , y) = x2y2 − 3x2y − 2y2.

(b) The associated direction field shows the direction of motion along the trajecto-
ries.
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24.(a) The trajectories are solutions of the differential equation

dy

dx
=
−6x+ x3

6 y
,

which can also be written as (6x− x3)dx+ 6 ydy = 0 . The resulting ODE is exact,
with

∂H

∂x
= 6x− x3 and

∂H

∂y
= 6 y .

Integrating the first equation, we have H(x , y) = 3x2 − x4/4 + f(y). It follows
that

∂H

∂y
= f ′(y).

Comparing the two partial derivatives, we conclude that f(y) = 3y2 + c . Hence

H(x , y) = 3x2 − x4

4
+ 3y2.

(b)
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9.3

1. Write the system in the form x ′ =Ax+g(x). In this case, it is evident that

d

dt

(
x

y

)
=

(
1 0
1 −2

)(
x

y

)
+

(
−y2

x2

)
.

That is, g(x) = (−y 2, x2)T . Using polar coordinates, ‖g(x)‖ = r2
√

sin4 θ + cos4 θ
and ‖x‖ = r . Hence

lim
r→ 0

‖g(x)‖
‖x‖

= lim
r→ 0

r
√

sin4 θ + cos4 θ = 0 ,

and the system is locally linear. The origin is an isolated critical point of the linear
system

d

dt

(
x

y

)
=

(
1 0
1 −2

)(
x

y

)
.

The characteristic equation of the coefficient matrix is r2 + r − 2 = 0 , with roots
r1 = 1 and r2 = −2 . Hence the critical point is a saddle, which is unstable.

2. The system can be written as

d

dt

(
x

y

)
=

(
−1 1
−4 −1

)(
x

y

)
+

(
2xy

x2 − y2

)
.

Following the discussion in Example 3, we note that F (x , y) = −x+ y + 2xy and
G(x , y) = −4x− y + x2 − y2. Both of the functions F and G are twice differen-
tiable, hence the system is locally linear. Furthermore,

Fx = −1 + 2y , Fy = 1 + 2x , Gx = −4 + 2x , Gy = −1− 2y .

The origin is an isolated critical point, with(
Fx(0 , 0) Fy(0 , 0)
Gx(0 , 0) Gy(0 , 0)

)
=

(
−1 1
−4 −1

)
.

The characteristic equation of the associated linear system is r2 + 2 r + 5 = 0 , with
complex conjugate roots r1,2 = −1 ± 2i . The origin is a stable spiral, which is
asymptotically stable.

5.(a) The critical points consist of the solution set of the equations

(2 + x)(y − x) = 0

(4− x)(y + x) = 0 .

As shown in Problem 13 of Section 9.2 , the only critical points are at (0 , 0), (4 , 4)
and (−2 , 2).

(b,c) First note that F (x , y) = (2 + x)(y − x) and G(x , y) = (4− x)(y + x) . The
Jacobian matrix of the vector field is

J =

(
Fx(x , y) Fy(x , y)
Gx(x , y) Gy(x , y)

)
=

(
−2− 2x+ y 2 + x
4− y − 2x 4− x

)
.
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At the origin, the coefficient matrix of the linearized system is

J(0 , 0) =

(
−2 2
4 4

)
,

with eigenvalues r1 = 1−
√

17 and r2 = 1 +
√

17 . The eigenvalues are real, with
opposite sign. Hence the critical point is a saddle, which is unstable. At the point
(−2 , 2), the coefficient matrix of the linearized system is

J(−2 , 2) =

(
4 0
6 6

)
,

with eigenvalues r1 = 4 and r2 = 6 . The eigenvalues are real, unequal and positive,
hence the critical point is an unstable node. At the point (4 , 4), the coefficient
matrix of the linearized system is

J(4 , 4) =

(
−6 6
−8 0

)
,

with complex conjugate eigenvalues r1,2 = −3 ± i
√

39 . The critical point is a
stable spiral, which is asymptotically stable. Based on Table 9.3.1, the nonlinear
terms do not affect the stability and type of each critical point.

(d)

7.(a) The critical points are solutions of the equations

1− y = 0

(x− y)(x+ y) = 0 .

The first equation requires that y = 1 . Based on the second equation, x = ± 1 .
Hence the critical points are (−1 , 1) and (1 , 1).

(b,c) F (x , y) = 1− y and G(x , y) = x2 − y2 . The Jacobian matrix of the vector
field is

J =

(
Fx(x , y) Fy(x , y)
Gx(x , y) Gy(x , y)

)
=

(
0 −1

2x −2y

)
.
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At the critical point (−1 , 1), the coefficient matrix of the linearized system is

J(−1 , 1) =

(
0 −1
−2 −2

)
,

with eigenvalues r1 = −1−
√

3 and r2 = −1 +
√

3 . The eigenvalues are real, with
opposite sign. Hence the critical point is a saddle, which is unstable. At the point
(1 , 1), the coefficient matrix of the linearized system is

J(1 , 1) =

(
0 −1
2 −2

)
,

with complex conjugate eigenvalues r1,2 = −1 ± i . The critical point is a stable
spiral, which is asymptotically stable.

(d)

Based on Table 9.3.1, the nonlinear terms do not affect the stability and type of
each critical point.

8.(a) The critical points are given by the solution set of the equations

x(1− x− y) = 0

y(2− y − 3x) = 0 .

If x = 0 , then either y = 0 or y = 2 . If y = 0 , then x = 0 or x = 1 . If y = 1− x ,
then either x = 1/2 or x = 1. If y = 2− 3x , then x = 0 or x = 1/2 . Hence the
critical points are at (0 , 0), (0 , 2), (1 , 0) and (1/2 , 1/2).

(b,c) Note that F (x , y) = x− x2 − xy and G(x , y) = (2y − y2 − 3xy)/4 . The Ja-
cobian matrix of the vector field is

J =

(
Fx(x , y) Fy(x , y)
Gx(x , y) Gy(x , y)

)
=

(
1− 2x− y −x
−3y/4 1/2− y/2− 3x/4

)
.

At the origin, the coefficient matrix of the linearized system is

J(0 , 0) =

(
1 0
0 1

2

)
,
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with eigenvalues r1 = 1 and r2 = 1/2 . The eigenvalues are real and both positive.
Hence the critical point is an unstable node. At the point (0 , 2), the coefficient
matrix of the linearized system is

J(0 , 2) =

(
−1 0
− 3

2 − 1
2

)
,

with eigenvalues r1 = −1 and r2 = −1/2 . The eigenvalues are both negative, hence
the critical point is a stable node. At the point (1 , 0), the coefficient matrix of the
linearized system is

J(1 , 0) =

(
−1 −1
0 − 1

4

)
,

with eigenvalues r1 = −1 and r2 = −1/4 . Both of the eigenvalues are negative,
and hence the critical point is a stable node. At the critical point (1/2 , 1/2), the
coefficient matrix of the linearized system is

J(1/2 , 1/2) =

(
−1/2 −1/2
−3/8 −1/8

)
,

with eigenvalues r1 = −5/16−
√

57 /16 and r2 = −5/16 +
√

57 /16 . The eigen-
values are real, with opposite sign. Hence the critical point is a saddle, which is
unstable.

(d)

Based on Table 9.3.1, the nonlinear terms do not affect the stability and type of
each critical point.

9.(a) The critical points are given by the solution set of the equations

(2 + y)(y − x/2) = 0

(2− x)(y + x/2) = 0 .

If y = −2 , then either x = 2 or x = 4 . If x = 2 , then y = −2 or y = 1 . Also,
x = y = 0 is a solution. Hence the critical points are at (0 , 0), (2 ,−2), (4 ,−2) and
(2 , 1).
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(b,c) Note that F (x , y) = 2y + y2 − x− xy/2 and G(x , y) = 2y − xy + x− x2/2 .
The Jacobian matrix of the vector field is

J =

(
Fx(x , y) Fy(x , y)
Gx(x , y) Gy(x , y)

)
=

(
−1− y/2 2 + 2y − x/2
−y + 1− x 2− x

)
.

At the origin, the coefficient matrix of the linearized system is

J(0 , 0) =

(
−1 2
1 2

)
,

with eigenvalues r1 = (1 +
√

17)/2 and r2 = (1−
√

17)/2 . The eigenvalues are
real, with opposite sign. Hence the critical point is a saddle, which is unstable. At
the point (2 ,−2), the coefficient matrix of the linearized system is

J(2 ,−2) =

(
0 −3
1 0

)
,

with eigenvalues r1 =
√

3i and r2 = −
√

3i . The eigenvalues are purely imaginary,
hence the critical point is either a center or a spiral point. At the point (4 ,−2),
the coefficient matrix of the linearized system is

J(4 ,−2) =

(
0 −4
−1 −2

)
,

with eigenvalues r1 = −1 +
√

5 and r2 = −1−
√

5 . The eigenvalues are real, with
opposite sign. Hence the critical point is a saddle, which is unstable. At the critical
point (2 , 1), the coefficient matrix of the linearized system is

J(2 , 1) =

(
−3/2 3
−2 0

)
,

with eigenvalues r1 = −3/4 +
√

87 i/4 and r2 = −3/4−
√

87 i/4 . The critical
point is a stable spiral, which is asymptotically stable.

(d)

We observe that the point (2,−2) is a spiral point.
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11.(a) The critical points are solutions of the equations

2x+ y + xy3 = 0

x− 2y − xy = 0 .

Substitution of y = x/(x+ 2) into the first equation results in

3x4 + 13x3 + 28x2 + 20x = 0 .

One root of the resulting equation is x = 0 . The only other real root of the equation
is

x =
1

9

[
(287 + 18

√
2019 )1/3 − 83(287 + 18

√
2019 )−1/3 − 13

]
.

Hence the critical points are (0 , 0) and (−1.19345... ,−1.4797...).

(b,c) F (x , y) = 2x+ y + xy3 and G(x , y) = x− 2y − xy. The Jacobian matrix of
the vector field is

J =

(
Fx(x , y) Fy(x , y)
Gx(x , y) Gy(x , y)

)
=

(
2 + y3 1 + 3xy2

1− y −2− x

)
.

At the origin, the coefficient matrix of the linearized system is

J(0 , 0) =

(
2 1
1 −2

)
,

with eigenvalues r1 =
√

5 and r2 = −
√

5 . The eigenvalues are real and of op-
posite sign. Hence the critical point is a saddle, which is unstable. At the point
(−1.19345... ,−1.4797...), the coefficient matrix of the linearized system is

J(−1.19345 ,−1.4797) =

(
−1.2399 −6.8393
2.4797 −0.8065

)
,

with complex conjugate eigenvalues r1,2 = −1.0232 ± 4.1125 i . The critical point
is a stable spiral, which is asymptotically stable.

(d)
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In both cases, the nonlinear terms do not affect the stability and type of the critical
point.

12.(a) The critical points are given by the solution set of the equations

(1 + x) sin y = 0

1− x− cos y = 0 .

If x = −1 , then we must have cos y = 2 , which is impossible. Therefore sin y = 0 ,
which implies that y = nπ , n = 0 ,± 1 , 2 , ... . Based on the second equation,

x = 1− cos nπ .

It follows that the critical points are located at (0 , 2kπ) and (2 , (2k + 1)π) , where
k = 0 ,± 1 ,± 2 , ... .

(b,c) Given that F (x , y) = (1 + x) sin y and G(x , y) = 1− x− cos y , the Jaco-
bian matrix of the vector field is

J =

(
sin y (1 + x) cos y
−1 sin y

)
.

At the critical points (0 , 2kπ), the coefficient matrix of the linearized system is

J(0 , 2kπ) =

(
0 1
−1 0

)
,

with purely complex eigenvalues r1,2 = ± i . The critical points of the associated
linear systems are centers, which are stable. Note that Theorem 9.3.2 does not
provide a definite conclusion regarding the relation between the nature of the critical
points of the nonlinear systems and their corresponding linearizations. At the points
(2 , (2k + 1)π), the coefficient matrix of the linearized system is

J [2 , (2k + 1)π] =

(
0 −3
−1 0

)
,

with eigenvalues r1 =
√

3 and r2 = −
√

3 . The eigenvalues are real, with opposite
sign. Hence the critical points of the associated linear systems are saddles, which
are unstable.

(d)
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As asserted in Theorem 9.3.2, the trajectories near the critical points (2 , (2k + 1)π)
resemble those near a saddle. Upon closer examination, the critical points (0 , 2kπ)
are indeed centers.

13.(a) The critical points are solutions of the equations

x− y2 = 0

y − x2 = 0 .

Substitution of y = x2 into the first equation results in

x− x4 = 0 ,

with real roots x = 0 , 1 . Hence the critical points are at (0 , 0) and (1 , 1).

(b,c) In this problem, F (x , y) = x− y2 and G(x , y) = y − x2 . The Jacobian ma-
trix of the vector field is

J =

(
1 −2y
−2x 1

)
.

At the origin, the coefficient matrix of the linearized system is

J(0 , 0) =

(
1 0
0 1

)
,

with repeated eigenvalues r1 = 1 and r2 = 1 . It is easy to see that the correspond-
ing eigenvectors are linearly independent. Hence the critical point is an unstable
proper node. Theorem 9.3.2 does not provide a definite conclusion regarding the
relation between the nature of the critical point of the nonlinear system and the
corresponding linearization. At the critical point (1 , 1), the coefficient matrix of
the linearized system is

J(1 , 1) =

(
1 −2
−2 1

)
,

with eigenvalues r1 = 3 and r2 = −1 . The eigenvalues are real, with opposite sign.
Hence the critical point is a saddle, which is unstable.

(d)
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Closer examination reveals that the critical point at the origin is indeed a proper
node.

14.(a) The critical points are given by the solution set of the equations

1− xy = 0

x− y3 = 0 .

After multiplying the second equation by y , it follows that y = ± 1 . Hence the
critical points of the system are at (1 , 1) and (−1 ,−1).

(b,c) Note that F (x , y) = 1− xy and G(x , y) = x− y3 . The Jacobian matrix of
the vector field is

J =

(
−y −x
1 −3y2

)
.

At the critical point (1 , 1), the coefficient matrix of the linearized system is

J(1 , 1) =

(
−1 −1
1 −3

)
,

with eigenvalues r1 = −2 and r2 = −2 . The eigenvalues are real and equal. It is
easy to show that there is only one linearly independent eigenvector. Hence the
critical point is a stable improper node. Theorem 9.3.2 does not provide a definite
conclusion regarding the relation between the nature of the critical point of the
nonlinear system and the corresponding linearization. At the point (−1 ,−1), the
coefficient matrix of the linearized system is

J(−1 ,−1) =

(
1 1
1 −3

)
,

with eigenvalues r1 = −1 +
√

5 and r2 = −1−
√

5 . The eigenvalues are real, with
opposite sign. Hence the critical point of the associated linear system is a saddle,
which is unstable.

(d)

Closer examination reveals that the critical point at (1 , 1) is indeed a stable im-
proper node, which is asymptotically stable.
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15.(a) The critical points are given by the solution set of the equations

−2x− y − x(x2 + y2) = 0

x− y + y(x2 + y2) = 0 .

It is clear that the origin is a critical point. Solving the first equation for y , we find
that

y =
−1 ±

√
1− 8x2 − 4x4

2x
.

Substitution of these relations into the second equation results in two equations of
the form f1(x) = 0 and f2(x) = 0 . Plotting these functions, we note that only
f1(x) = 0 has real roots given by x ≈ ± 0.33076 . It follows that the additional
critical points are at (− 0.33076 , 1.0924) and ( 0.33076 ,−1.0924).

(b,c) Given that
F (x , y) = −2x− y − x(x2 + y2)

G(x , y) = x− y + y(x2 + y2),

the Jacobian matrix of the vector field is

J =

(
−2− 3x2 − y2 −1− 2xy

1 + 2xy −1 + x2 + 3y2

)
.

At the critical point (0 , 0), the coefficient matrix of the linearized system is

J(0 , 0) =

(
−2 −1
1 −1

)
,

with complex conjugate eigenvalues r1,2 = (−3 ± i
√

3 )/2 . Hence the critical point
is a stable spiral, which is asymptotically stable. At the point (− 0.33076 , 1.0924),
the coefficient matrix of the linearized system is

J(− 0.33076 , 1.0924) =

(
−3.5216 −0.27735
0.27735 2.6895

)
,

with eigenvalues r1 = −3.5092 and r2 = 2.6771 . The eigenvalues are real, with
opposite sign. Hence the critical point of the associated linear system is a saddle,
which is unstable. Identical results hold for the point at ( 0.33076 ,−1.0924) .

(d)
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16.(a) The critical points are solutions of the equations

y + x(1− x2 − y2) = 0

−x+ y(1− x2 − y2) = 0 .

Multiply the first equation by y and the second equation by x . The difference of
the two equations gives x2 + y2 = 0 . Hence the only critical point is at the origin.

(b,c) With F (x , y) = y + x(1− x2 − y2) and G(x , y) = −x+ y(1− x2 − y2), the
Jacobian matrix of the vector field is

J =

(
1− 3x2 − y2 1− 2xy
−1− 2xy 1− x2 − 3y2

)
.

At the origin, the coefficient matrix of the linearized system is

J(0 , 0) =

(
1 1
−1 1

)
,

with complex conjugate eigenvalues r1,2 = 1 ± i . Hence the origin is an unstable
spiral.

(d)

17.(a) The critical points are given by the solution set of the equations

4− y2 = 0

(x+ 3/2)(y − x) = 0 .

Clearly, y = ±2. The second equation tells us that x = −3/2 or x = y. Hence the
critical points are at (−3/2 , 2), (−3/2 ,−2), (2 , 2) and (−2 ,−2).

(b,c) Note that F (x , y) = 4− y2 and G(x , y) = xy + 3y/2− x2 − 3x/2 . The Ja-
cobian matrix of the vector field is

J =

(
Fx(x , y) Fy(x , y)
Gx(x , y) Gy(x , y)

)
=

(
0 −2y

y − 2x− 3/2 x+ 3/2

)
.
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At (−3/2, 2), the coefficient matrix of the linearized system is

J(−3/2 , 2) =

(
0 −4

7/2 0

)
,

with eigenvalues r1 =
√

14i and r2 = −
√

14i . The eigenvalues are purely imag-
inary, hence the critical point is either a center or a spiral point. At the point
(−3/2 ,−2), the coefficient matrix of the linearized system is

J(−3/2 ,−2) =

(
0 4
−1/2 0

)
,

with eigenvalues r1 =
√

2i and r2 = −
√

2i . The eigenvalues are purely imaginary,
hence the critical point is either a center or a spiral point. At the point (2 , 2), the
coefficient matrix of the linearized system is

J(2 , 2) =

(
0 −4
−7/2 7/2

)
,

with eigenvalues r1 = (7 +
√

273)/4 and r2 = (7−
√

273)/4 . The eigenvalues are
real, with opposite sign. Hence the critical point is a saddle, which is unstable. At
the critical point (−2 ,−2), the coefficient matrix of the linearized system is

J(−2 ,−2) =

(
0 4

1/2 −1/2

)
,

with eigenvalues r1 = (−1 +
√

33 )/4 and r2 = −1−
√

33 )/4 . Hence the critical
point is a saddle, which is unstable.

(d)

Further observation indicates that (−3/2, 2) and (−3/2,−2) are unstable spiral
points.

19.(a) The Jacobian matrix of the vector field is

J =

(
0 1

1 + 6x2 0

)
.

At the origin, the coefficient matrix of the linearized system is

J(0 , 0) =

(
0 1
1 0

)
,
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with eigenvalues r1 = 1 and r2 = −1 . The eigenvalues are real, with opposite sign.
Hence the critical point is a saddle point.

(b) The trajectories of the linearized system are solutions of the differential equation

dy

dx
=
x

y
,

which is separable. Integrating both sides of the equation x dx− y dy = 0 , the
solution is x2 − y2 = C . The trajectories consist of a family of hyperbolas.

It is easy to show that the general solution is given by x(t) = c1e
t + c2e

−t and
y(t) = c1e

t − c2e−t. The only bounded solutions consist of those for which c1 = 0 .
In that case, x(t) = c2e

−t = −y(t).

(c) The trajectories of the given system are solutions of the differential equation

dy

dx
=
x+ 2x3

y
,

which can also be written as (x+ 2x3)dx− y dy = 0 . The resulting ODE is exact,
with

∂H

∂x
= x+ 2x3 and

∂H

∂y
= −y .

Integrating the first equation, we find that H(x , y) = x2/2 + x4/2 + f(y). It fol-
lows that

∂H

∂y
= f ′(y).

Comparing the partial derivatives, we obtain f(y) = −y2/2 + c . Hence the solu-
tions are level curves of the function

H(x , y) = x2/2 + x4/2− y2/2 .

(The equation is also separable. Separation of variables yields the same H(x, y).)
The trajectories approaching to, or diverging from, the origin are no longer straight
lines.
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21.(a) The solutions of the system of equations

y = 0

−ω2 sin x = 0

consist of the points (±nπ , 0) , n = 0 , 1 , 2 , . . . . The functions F (x , y) = y and
G(x , y) = −ω2 sin x are analytic on the entire plane. It follows that the system is
locally linear near each of the critical points.

(b) The Jacobian matrix of the vector field is

J =

(
0 1

−ω2 cos x 0

)
.

At the origin, the coefficient matrix of the linearized system is

J(0 , 0) =

(
0 1
−ω2 0

)
,

with purely complex eigenvalues r1,2 = ± iω . Hence the origin is a center. Since
the eigenvalues are purely complex, Theorem 9.3.2 gives no definite conclusion
about the critical point of the nonlinear system. Physically, the critical point
corresponds to the state θ = 0 , θ ′ = 0 . That is, the rest configuration of the
pendulum.

(c) At the critical point (π , 0), the coefficient matrix of the linearized system is

J(π , 0) =

(
0 1
ω2 0

)
,

with eigenvalues r1,2 = ±ω . The eigenvalues are real and of opposite sign. Hence
the critical point is a saddle. Theorem 9.3.2 asserts that the critical point for the
nonlinear system is also a saddle, which is unstable. This critical point corresponds
to the state θ = π , θ ′ = 0 . That is, the upright rest configuration.

(d) Let ω2 = 1 . The following is a plot of the phase curves near (0 , 0).
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The local phase portrait shows that the origin is indeed a center.

(e)

It should be noted that the phase portrait has a periodic pattern, since θ = x mod
2π .

22.(a) The trajectories of the system in Problem 21 are solutions of the differential
equation

dy

dx
=
−ω2 sin x

y
,

which can also be written as ω2 sin x dx+ y dy = 0 . The resulting ODE is exact,
with

∂H

∂x
= ω2 sin x and

∂H

∂y
= y .

Integrating the first equation, we find that H(x , y) = −ω2 cos x+ f(y). It follows
that

∂H

∂y
= f ′(y).

Comparing the partial derivatives, we obtain f(y) = y2/2 + C . Hence the solutions
are level curves of the function

H(x , y) = −ω2 cos x+ y2/2 .
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Adding an arbitrary constant, say ω2, to the function H(x , y) does not change the
nature of the level curves. Hence the trajectories are can be written as

1

2
y2 + ω2(1− cos x) = c ,

in which c is an arbitrary constant.

(b) Multiplying by mL2 and reverting to the original physical variables, we obtain

1

2
mL2(

dθ

dt
)2 +mL2ω2(1− cos θ) = mL2c .

Since ω2 = g/L , the equation can be written as

1

2
mL2(

dθ

dt
)2 +mgL(1− cos θ) = E ,

in which E = mL2c .

(c) The absolute velocity of the point mass is given by v = Ldθ/dt . The kinetic
energy of the mass is T = mv2/2 . Choosing the rest position as the datum, that
is, the level of zero potential energy, the gravitational potential energy of the point
mass is

V = mgL(1− cos θ).

It follows that the total energy,T + V , is constant along the trajectories.

23.(a) A = 0.25

Since the system is undamped, and y(0) = 0 , the amplitude is 0.25 . The period is
estimated at τ ≈ 3.16 .
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(b)

R τ

A = 0.5 0.5 3.20

A = 1.0 1.0 3.35

A = 1.5 1.5 3.63

A = 2.0 2.0 4.17

(c) Since the system is conservative, the amplitude is equal to the initial amplitude.
On the other hand, the period of the pendulum is a monotone increasing function
of the initial position A .

It appears that as A → 0 , the period approaches π, the period of the corresponding
linear pendulum (2π/ω).
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(d)

The pendulum is released from rest, at an inclination of 4− π radians from the
vertical. Based on conservation of energy, the pendulum will swing past the lower
equilibrium position (θ = 2π) and come to rest, momentarily, at a maximum rota-
tional displacement of θmax = 3π − (4− π) = 4π − 4 . The transition between the
two dynamics occurs at A = π , that is, once the pendulum is released beyond the
upright configuration.

26.(a) It is evident that the origin is a critical point of each system. Furthermore,
it is easy to see that the corresponding linear system, in each case, is given by

dx

dt
= y

dy

dt
= −x .

The eigenvalues of the coefficient matrix are r1,2 = ± i . Hence the critical point of
the linearized system is a center.

(b) Using polar coordinates, it is also easy to show that

lim
r→ 0

‖g(x)‖
‖x‖

= 0 .

Alternatively, the nonlinear terms are analytic in the entire plane. Hence both
systems are locally linear near the origin.

(c) For system (ii), note that

x
dx

dt
+ y

dy

dt
= xy − x2(x2 + y2)− xy − y2(x2 + y2).

Converting to polar coordinates, and differentiating the equation r2 = x2 + y2 with
respect to t , we find that

r
dr

dt
= x

dx

dt
+ y

dy

dt
= −(x2 + y2)2 = −r4.

That is, r ′ = −r3. It follows that r2 = 1/(2t+ c), where c = 1/r2
0. Since r → 0 as

t → ∞ and dr/dt < 0, regardless of the value of r0 , the origin is an asymptotically
stable critical point.
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On the other hand, for system (i),

r
dr

dt
= x

dx

dt
+ y

dy

dt
= (x2 + y2)2 = r4.

That is, r ′ = r3. Solving the differential equation results in

r2 =
c− 2t

(2t− c)2
.

Imposing the initial condition r(0) = r0 , we obtain a specific solution

r2 = − r2
0

2 r2
0 t− 1

.

Since the solution becomes unbounded as t → 1/2r2
0 , the critical point is unstable.

27. The characteristic equation of the coefficient matrix is r2 + 1 = 0 , with complex
roots r1,2 = ± i . Hence the critical point at the origin is a center. The characteristic
equation of the perturbed matrix is r2 − 2 ε r + 1 + ε2 = 0 , with complex conjugate
roots r1,2 = ε ± i . As long as ε 6= 0 , the critical point of the perturbed system is
a spiral point. Its stability depends on the sign of ε .

28. The characteristic equation of the coefficient matrix is (r + 1)2 = 0, with roots
r1 = r2 = −1. Hence the critical point is an asymptotically stable node. On the
other hand, the characteristic equation of the perturbed system is r2 + 2r + 1 + ε =
0, with roots r1,2 = −1 ±

√
−ε . If ε > 0 , then r1,2 = −1 ± i

√
ε are complex

roots. The critical point is a stable spiral. If ε < 0 , then r1,2 = −1 ±
√
|ε| are

real and both negative (|ε| < 1). The critical point remains a stable node.

9.4

1.(a)
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(b) The critical points are solutions of the system of equations

x(1.5− x− 0.5 y) = 0

y(2− y − 0.75x) = 0 .

The four critical points are (0 , 0), (0 , 2), (1.5 , 0) and (0.8 , 1.4).

(c) The Jacobian matrix of the vector field is

J =

(
3/2− 2x− y/2 −x/2
−3y/4 2− 3x/4− 2y

)
.

At the critical point (0 , 0), the coefficient matrix of the linearized system is

J(0 , 0) =

(
3/2 0
0 2

)
.

The eigenvalues and eigenvectors are

r1 = 3/2 , ξ(1) =

(
1

0

)
; r2 = 2 , ξ(2) =

(
0

1

)
.

The eigenvalues are positive, hence the origin is an unstable node.
At the critical point (0 , 2), the coefficient matrix of the linearized system is

J(0 , 2) =

(
1/2 0
−3/2 −2

)
.

The eigenvalues and eigenvectors are

r1 = 1/2 , ξ(1) =

(
1

−0.6

)
; r2 = −2 , ξ(2) =

(
0

1

)
.

The eigenvalues are of opposite sign. Hence the critical point is a saddle, which is
unstable.
At the critical point (1.5 , 0), the coefficient matrix of the linearized system is

J(1.5 , 0) =

(
−1.5 −0.75

0 0.875

)
.

The eigenvalues and eigenvectors are

r1 = −1.5 , ξ(1) =

(
1

0

)
; r2 = 0.875 , ξ(2) =

(
−0.31579

1

)
.

The eigenvalues are of opposite sign. Hence the critical point is also a saddle, which
is unstable.
At the critical point (0.8 , 1.4), the coefficient matrix of the linearized system is

J(0.8 , 1.4) =

(
−0.8 −0.4
−1.05 −1.4

)
.

The eigenvalues and eigenvectors are

r1 = −11

10
+

√
51

10
, ξ(1) =

(
1

3−
√

51
4

)
; r2 = −11

10
−
√

51

10
, ξ(2) =

(
1

3+
√

51
4

)
.
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The eigenvalues are both negative. Hence the critical point is a stable node, which
is asymptotically stable.

(d,e)

(f) Except for initial conditions lying on the coordinate axes, almost all trajectories
converge to the stable node at (0.8 , 1.4). Thus the species can coexist.

2.(a)

(b) The critical points are the solution set of the system of equations

x(1.5− x− 0.5 y) = 0

y(2− 0.5 y − 1.5x) = 0 .

The four critical points are (0 , 0), (0 , 4), (1.5 , 0) and (1 , 1).

(c) The Jacobian matrix of the vector field is

J =

(
3/2− 2x− y/2 −x/2
−3y/2 2− 3x/2− y

)
.

At the origin, the coefficient matrix of the linearized system is

J(0 , 0) =

(
3/2 0
0 2

)
.
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The eigenvalues and eigenvectors are

r1 = 3/2 , ξ(1) =

(
1

0

)
; r2 = 2 , ξ(2) =

(
0

1

)
.

The eigenvalues are positive, hence the origin is an unstable node.
At the critical point (0 , 4), the coefficient matrix of the linearized system is

J(0 , 4) =

(
−1/2 0
−6 −2

)
.

The eigenvalues and eigenvectors are

r1 = −1/2 , ξ(1) =

(
1

−4

)
; r2 = −2 , ξ(2) =

(
0

1

)
.

The eigenvalues are both negative, hence the critical point (0 , 4) is a stable node,
which is asymptotically stable.
At the critical point (3/2 , 0), the coefficient matrix of the linearized system is

J(3/2 , 0) =

(
−3/2 −3/4

0 −1/4

)
.

The eigenvalues and eigenvectors are

r1 = −3/2 , ξ(1) =

(
1

0

)
; r2 = −1/4 , ξ(2) =

(
3

−5

)
.

The eigenvalues are both negative, hence the critical point is a stable node, which
is asymptotically stable.
At the critical point ( 1, 1), the coefficient matrix of the linearized system is

J(1 , 1) =

(
−1 −1/2
−3/2 −1/2

)
.

The eigenvalues and eigenvectors are

r1 =
−3 +

√
13

4
, ξ(1) =

(
1

− 1+
√

13
2

)
; r2 = −3 +

√
13

4
, ξ(2) =

(
0

−1+
√

13
2

)
.

The eigenvalues are of opposite sign, hence ( 1, 1) is a saddle, which is unstable.

(d,e)
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(f) Trajectories approaching the critical point (1 , 1) form a separatrix. Solutions
on either side of the separatrix approach either (0 , 4) or (1.5 , 0). Thus depending
on the initial conditions, one species will drive the other to extinction.

4.(a)

(b) The critical points are solutions of the system of equations

x(1.5− 0.5x− y) = 0

y(0.75− y − 0.125x) = 0 .

The four critical points are (0 , 0), (0 , 3/4), (3 , 0) and (2 , 1/2).

(c) The Jacobian matrix of the vector field is

J =

(
3/2− x− y −x
−y/8 3/4− x/8− 2y

)
.

At the origin, the coefficient matrix of the linearized system is

J(0 , 0) =

(
3/2 0
0 3/4

)
.

The eigenvalues and eigenvectors are

r1 = 3/2 , ξ(1) =

(
1

0

)
; r2 = 3/4 , ξ(2) =

(
0

1

)
.

The eigenvalues are positive, hence the origin is an unstable node.
At the critical point (0 , 3/4), the coefficient matrix of the linearized system is

J(0 , 3/4) =

(
3/4 0
−3/32 −3/4

)
.

The eigenvalues and eigenvectors are

r1 = 3/4 , ξ(1) =

(
−16

1

)
; r2 = −3/4 , ξ(2) =

(
0

1

)
.

The eigenvalues are of opposite sign, hence the critical point (0 , 3/4) is a saddle,
which is unstable.
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At the critical point (3 , 0), the coefficient matrix of the linearized system is

J(3 , 0) =

(
−3/2 −3

0 3/8

)
.

The eigenvalues and eigenvectors are

r1 = −3/2 , ξ(1) =

(
1

0

)
; r2 = 3/8 , ξ(2) =

(
−8

5

)
.

The eigenvalues are of opposite sign, hence the critical point (0 , 3/4) is a saddle,
which is unstable.
At the critical point (2 , 1/2), the coefficient matrix of the linearized system is

J(2 , 1/2) =

(
−1 −2
−1/16 −1/2

)
.

The eigenvalues and eigenvectors are

r1 =
−3 +

√
3

4
, ξ(1) =

(
1

− 1+
√

3
8

)
; r2 = −3 +

√
3

4
, ξ(2) =

(
0

−1+
√

3
8

)
.

The eigenvalues are negative, hence the critical point (2 , 1/2) is a stable node,
which is asymptotically stable.

(d,e)

(f) Except for initial conditions along the coordinate axes, almost all solutions
converge to the stable node (2 , 1/2). Thus the species can coexist.

7. It follows immediately that

(σ1X + σ2Y )2 − 4σ1σ2XY = σ2
1X

2 + 2σ1σ2XY + σ2
2Y

2 − 4σ1σ2XY = (σ1X − σ2Y )2,

so
(σ1X + σ2Y )2 − 4(σ1σ2 − α1α2)XY = (σ1X − σ2Y )2 + 4α1α2XY.

Since all parameters and variables are positive, it follows that

(σ1X + σ2Y )2 − 4(σ1σ2 − α1α2)XY ≥ 0 .

Hence the radicand in Eq.(39) is nonnegative.
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10.(a) The critical points consist of the solution set of the equations

x(ε1 − σ1x− α1y) = 0

y(ε2 − σ2y − α2x) = 0 .

If x = 0 , then either y = 0 or y = ε2/σ2 . If ε1 − σ1x− α1y = 0 , then solving for
x results in x = (ε1 − α1y)/σ1. Substitution into the second equation yields

(σ1σ2 − α1α2)y2 − (σ1ε 2 − ε 1α2)y = 0 .

Based on the hypothesis, it follows that (σ1ε2 − ε1α2)y = 0. So if σ1ε2 − ε1α2 6= 0,
then y = 0, and the critical points are located at (0 , 0), (0 , ε2/σ2) and (ε1/σ1, 0).
For the case σ1ε 2 − ε 1α2 = 0, y can be arbitrary. From the relation

x = (ε1 − α1y)/σ1,

we conclude that all points on the line σ1x+ α1y = ε1 are critical points, in addi-
tion to the point (0 , 0).

(b) The Jacobian matrix of the vector field is

J =

(
ε1 − 2σ1x− α1y −α1x

−α2y ε2 − 2σ2y − α2x

)
.

At the origin, the coefficient matrix of the linearized system is

J(0 , 0) =

(
ε1 0
0 ε2

)
,

with eigenvalues r1 = ε1 and r2 = ε2 . Since both eigenvalues are positive, the
origin is an unstable node.
At the point (0 , ε2/σ2), the coefficient matrix of the linearized system is

J(0 , ε2/σ2) =

(
(ε1σ2 − α1ε2)/σ2 0

ε2α2/σ2 −ε2

)
=

(
(ε1α2 − σ1ε2)/α2 0

ε2α2/σ2 −ε2

)
,

since σ1σ2 − α1α2 = 0 implies that α1/σ2 = σ1/α2. Thus the matrix has eigenval-
ues r1 = (ε1α2 − σ1ε2)/α2 and r2 = −ε2 . If σ1ε2 − ε1α2 > 0 , then both eigenval-
ues are negative. Hence the point (0 , ε2/σ2) is a stable node, which is asymptotically
stable. If σ1ε2 − ε1α2 < 0 , then the eigenvalues are of opposite sign. Hence the
point (0 , ε2/σ2) is a saddle, which is unstable.
At the point (ε1/σ1, 0), the coefficient matrix of the linearized system is

J(ε1/σ1, 0) =

(
−ε1 −ε1α1/σ1

0 (σ1ε2 − ε1α2)/σ1

)
,

with eigenvalues r1 = (σ1ε2 − ε1α2)/σ1 and r2 = −ε1 . If σ1ε2 − ε1α2 > 0 , then
the eigenvalues are of opposite sign. Hence the point (ε1/σ1, 0) is a saddle, which
is unstable. If σ1ε2 − ε1α2 < 0 , then both eigenvalues are negative. In that case
the point (ε1/σ1, 0) is a stable node, which is asymptotically stable.

(c) As shown in part (a), when σ1ε2 − ε1α2 = 0, the set of critical points consists of
(0, 0) and all the points on the straight line σ1x+ α1y = ε1. Based on part (b), the
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origin is still an unstable node. Setting y = (ε1 − σ1x)/α1 , the Jacobian matrix of
the vector field, along the given straight line, is

J(ε1/σ1, 0) =

(
−σ1x −α1x

−α2(ε1 − σ1x)/α1 ε2 − 2σ2(ε1 − σ1x)/α1 − α2x

)
=

(
−σ1x −α1x

−α2(ε1 − σ1x)/α1 α2x− ε1α2/σ1

)
,

since σ1σ2 − α1α2 = 0 implies that σ2/α1 = α2/σ1 and since σ1ε2 − ε1α2 = 0 im-
plies that ε2 = ε1α2/σ1. The characteristic equation of the matrix is

r2 +

[
ε1α2 − α2σ1x+ σ2

1x

σ1

]
r = 0 .

Since ε2 = ε1α2/σ1, we have that (ε1α2 − α2σ1x+ σ2
1x)/σ1 = ε 2 − α2x+ σ1x. Hence

the characteristic equation can be written as

r2 + [ε 2 − α2x+ σ1x] r = 0 .

First note that 0 ≤ x ≤ ε1/σ1. Since the coefficient in the quadratic equation is
linear, and

ε 2 − α2x+ σ1x =

{
ε 2 at x = 0

ε 1 at x = ε1/σ1 ,

it follows that the coefficient is positive for 0 ≤ x ≤ ε1/σ1. Therefore, along the
straight line σ1x+ α1y = ε1, one eigenvalue is zero and the other one is negative.
Hence the continuum of critical points consists of stable nodes, which are asymp-
totically stable.

11.(a) The critical points are solutions of the system of equations

x(1− x− y) + δa = 0

y(0.75− y − 0.5x) + δb = 0 .

Assume solutions of the form

x = x0 + x1δ + x2δ
2 + . . .

y = y0 + y1δ + y2δ
2 + . . . .

Substitution of the series expansions results in

x0(1− x0 − y0) + (x1 − 2x1x0 − x0y1 − x1y0 + a)δ + . . . = 0

y0(0.75− y0 − 0.5x0 ) + (0.75 y1 − 2y0y1 − x1y0/2− x0y1/2 + b)δ + . . . = 0 .

(b) Taking a limit as δ→ 0 , the equations reduce to the original system of equations.
It follows that x0 = y0 = 0.5 .

(c) Setting the coefficients of the linear terms equal to zero, we find that

−y1/2− x1/2 + a = 0

−x1/4− y1/2 + b = 0 ,

with solution x1 = 4a− 4b and y1 = −2a+ 4b .



422 Chapter 9. Nonlinear Differential Equations and Stability

(d) Consider the ab -parameter space. The collection of points for which b < a
represents an increase in the level of species 1. At points where b > a , x1δ < 0 .
Likewise, the collection of points for which 2b > a represents an increase in the
level of species 2 . At points where 2b < a , y1δ < 0 .

It follows that if b < a < 2b , the level of both species will increase. This condition
is represented by the wedge-shaped region on the graph. Otherwise, the level of
one species will increase, whereas the level of the other species will simultaneously
decrease. Only for a = b = 0 will both populations remain the same.

12.(a) The critical points consist of the solution set of the equations

−y = 0

−γ y − x(x− 0.15)(x− 2) = 0 .

Setting y = 0 , the second equation becomes x(x− 0.15)(x− 2) = 0 , with roots
x = 0 , 0.15 and 2 . Hence the critical points are located at (0 , 0), (0.15 , 0) and
(2 , 0). The Jacobian matrix of the vector field is

J =

(
0 −1

−3x2 + 4.3x− 0.3 −γ

)
.

At the origin, the coefficient matrix of the linearized system is

J(0 , 0) =

(
0 −1
−0.3 −γ

)
,

with eigenvalues

r1,2 = −γ
2
± 1

10

√
25 γ2 + 30 .

Regardless of the value of γ , the eigenvalues are real and of opposite sign. Hence
(0 , 0) is a saddle, which is unstable.
At the critical point (0.15 , 0), the coefficient matrix of the linearized system is

J(0.15 , 0) =

(
0 −1

0.2775 −γ

)
,

with eigenvalues

r1,2 = −γ
2
± 1

20

√
100 γ2 − 111 .
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If 100 γ2 − 111 ≥ 0 , then the eigenvalues are real. Furthermore, since r1r2 =
0.2775 , both eigenvalues will have the same sign. Therefore the critical point
is a node, with its stability dependent on the sign of γ . If 100 γ2 − 111 < 0 , the
eigenvalues are complex conjugates. In that case the critical point (0.15 , 0) is a
spiral, with its stability dependent on the sign of γ .
At the critical point (2 , 0), the coefficient matrix of the linearized system is

J(2 , 0) =

(
0 −1
−3.7 −γ

)
,

with eigenvalues

r1,2 = −γ
2
± 1

10

√
25 γ2 + 370 .

Regardless of the value of γ , the eigenvalues are real and of opposite sign. Hence
(2 , 0) is a saddle, which is unstable.

(b)

For γ = 0.8 , the critical point (0.15 , 0) is a stable spiral.

Closer examination shows that for γ = 1.5 , the critical point (0.15 , 0) is a stable
node.

(c) Based on the phase portraits in part (b), it is apparent that the required value
of γ satisfies 0.8 < γ < 1.5 . Using the initial condition x(0) = 2 and y(0) = 0.01 ,
it is possible to solve the initial value problem for various values of γ . A reasonable
first guess is γ =

√
1.11 . This value marks the change in qualitative behavior of
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the critical point (0.15 , 0). Numerical experiments show that the solution remains
positive for γ ≈ 1.20 .

14.(a) Nullclines:

(a) α = 3 (b) α = 8/3 (c) α = 2

(b) The critical points are solutions of the algebraic system

3

2
α− y = 0

−4x+ y + x2 = 0

which are

(2 ±
√

4− 3

2
α ,

3

2
α),

and exist for α ≤ 8/3 .

(c) For α = 2 , the critical points are at (1, 3) and (3, 3). The Jacobian matrix of
the vector field is

J =

(
0 −1

−4 + 2x 1

)
.

At the critical point (1 , 3), the coefficient matrix of the linearized system is

J(1 , 3) =

(
0 −1
−2 1

)
.
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The eigenvalues of the Jacobian, r = −1 and 2 , are real and opposite in sign; hence
the critical point is a saddle point.
At the critical point (3 , 3), the coefficient matrix of the linearized system is

J(3 , 3) =

(
0 −1
2 1

)
.

The eigenvalues of the Jacobian are

r =
1 ± i

√
7

2
,

hence the critical point is an unstable spiral.

(d) The bifurcation value is α0 = 8/3. The coincident critical points are at (2, 4).
The coefficient matrix of the linearized system is

J(2 , 4) =

(
0 −1
0 1

)
.

The eigenvalues of the Jacobian are r = 0 and 1 .
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(e)

15.(a) Nullclines:

(a) α = 3 (b) α = 9/4 (c) α = 2

(b) The critical points are solutions of the algebraic system

−4x+ y + x2 = 0

−α− x+ y = 0

which are

x0 =
3 +
√

9− 4α

2
, y0 = α+

3 +
√

9− 4α

2

and

x0 =
3−
√

9− 4α

2
, y0 = α+

3−
√

9− 4α

2
.

These critical points exist for α ≤ 9/4 .

(c) For α = 2 , the critical points are at (1, 3) and (2, 4). The Jacobian matrix of
the vector field is

J =

(
2x− 4 1
−1 1

)
.

At the critical point (1 , 3), the coefficient matrix of the linearized system is

J(1 , 3) =

(
−2 1
−1 1

)
.
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The eigenvalues of the Jacobian are

r =
−1 ±

√
5

2
,

hence the critical point is a saddle point.
At the critical point (2 , 4), the coefficient matrix of the linearized system is

J(2 , 4) =

(
0 1
−1 1

)
.

The eigenvalues of the Jacobian are

r =
1 ± i

√
3

2
,

hence the critical point is an unstable spiral.

(d) A bifurcation occurs for α0 = 9/4 . The coincident critical points are at (3/2, 15/4) .
The coefficient matrix of the linearized system is

J(3/2 , 15/4) =

(
−1 1
−1 1

)
,

with eigenvalues both equal to zero.
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(e)

16.(a) Nullclines:

(a) α = 3 (b) α = 9/4 (c) α = 2

(b) The critical points are solutions of the algebraic system

−α− x+ y = 0

−4x+ y + x2 = 0

which are

x0 =
3 +
√

9− 4α

2
, y0 = α+

3 +
√

9− 4α

2

and

x0 =
3−
√

9− 4α

2
, y0 = α+

3−
√

9− 4α

2
.

These critical points exist for α ≤ 9/4 .

(c) For α = 2 , the critical points are at (1, 3) and (2, 4). The Jacobian matrix of
the vector field is

J =

(
−1 1

2x− 4 1

)
.

At the critical point (1 , 3), the coefficient matrix of the linearized system is

J(1 , 3) =

(
−1 1
−2 1

)
.
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The eigenvalues of the Jacobian are

r = ± i ,

hence the critical point is a center.
At the critical point (2 , 4), the coefficient matrix of the linearized system is

J(2 , 4) =

(
−1 1
0 1

)
.

The eigenvalues of the Jacobian, r = −1 and 1 , are real and opposite in sign; hence
the critical point is a saddle point.

(d) The bifurcation value is α0 = 8/3 . The coincident critical point is at (3/2, 14/4) .
The coefficient matrix of the linearized system is

J(3/2 , 15/4) =

(
−1 1
−1 1

)
.

The eigenvalues are both equal to zero.
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(e)

18.(a) Nullclines:

(a) α = 1/2 (b) α = 3/4 (c) α = 1

(b) The critical points are (0, 0), (1, 0), ((4α− 3)/(4α− 2), 1/(4α− 2)), and (0, 3/(4α)).
The third critical point is in the first quadrant as long as α ≥ 3/4.

(c) The third and fourth critical points will coincide (see part (b)) when α = 3/4.

(d,e) The Jacobian is

J =

(
1− 2x− y −x
−y/2 3/4− 2αy − x/2

)
.

This means that at the origin

J(0, 0) =

(
1 0
0 3/4

)
,

so the origin is an unstable node. (The eigenvalues are clearly 1 and 3/4.)
At the critical point (1, 0) the Jacobian is

J(1, 0) =

(
−1 −1
0 1/4

)
,

which means that this critical point is a saddle.
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At the critical point (0, 3/(4α)) the Jacobian is

J(0, 3/(4α)) =

(
1− 3/(4α) 0
−3/(8α) −3/4

)
,

which implies that this critical point is a saddle when α > 3/4 and an asymptotically
stable node when 0 < α < 3/4.
At the critical point ( 4α−3

4α−2 ,
1

4α−2 ) the Jacobian is given by

J(
4α− 3

4α− 2
,

1

4α− 2
) =

(
3−4α
4α−2

3−4α
4α−2

−1/2
4α−2

−α
4α−2

)
.

It can be shown that this is an asymptotically stable node when α > 3/4.

(f) Phase portraits:

(a) α = 1/2 (b) α = 3/4 (c) α = 1

19.(a) Nullclines:

(a) α = 3/4 (b) α = 1 (c) α = 5/4

(b) The critical points are (0, 0), (1, 0), (0, α) and (1/2, 1/2). Also, when α = 1,
then all points on the line x+ y = 1 are critical points.

(c) Clearly, α = 1 is the bifurcation value.
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(d,e) The Jacobian is

J =

(
1− 2x− y −x
−(2α− 1)y α− 2y − (2α− 1)x

)
.

This means that at the origin

J(0, 0) =

(
1 0
0 α

)
,

so the origin is an unstable node when α > 0.
At the critical point (1, 0) the Jacobian is

J(1, 0) =

(
−1 −1
0 1− α

)
,

which means that this critical point is a saddle when 0 < α < 1 and an asymptoti-
cally stable node when α > 1.
At the critical point (0, α) the Jacobian is

J(0, α)) =

(
1− α 0

−α(2α− 1) −α

)
,

which implies that this critical point is a saddle when 0 < α < 1 and an asymptot-
ically stable node when α > 1.
At the critical point (1/2, 1/2) the Jacobian is given by

J(1/2, 1/2) =

(
−1/2 −1/2

1/2− α −1/2

)
.

The eigenvalues of J(1/2, 1/2) are (−1±
√
−1 + 2α)/2. Thus the critical point is

an asymptotically stable spiral for 0 < α < 1/2, an asymptotically stable node for
1/2 ≤ α < 1, and a saddle for α > 1.

(f) Phase portraits:

(a) α = 3/4 (b) α = 1 (c) α = 5/4



9.5 433

9.5

1.(a)

(b) The critical points are solutions of the system of equations

x(1.5− 0.5 y) = 0

y(−0.5 + x) = 0 .

The two critical points are (0 , 0) and (0.5 , 3).

(c) The Jacobian matrix of the vector field is

J =

(
3/2− y/2 −x/2

y −1/2 + x

)
.

At the critical point (0 , 0), the coefficient matrix of the linearized system is

J(0 , 0) =

(
3/2 0
0 −1/2

)
.

The eigenvalues and eigenvectors are

r1 = 3/2 , ξ(1) =

(
1

0

)
; r2 = −1/2 , ξ(2) =

(
0

1

)
.

The eigenvalues are of opposite sign, hence the origin is a saddle, which is unstable.
At the critical point (0.5 , 3), the coefficient matrix of the linearized system is

J(0.5 , 3) =

(
0 −1/4
3 0

)
.

The eigenvalues and eigenvectors are

r1 = i

√
3

2
, ξ(1) =

(
1

−2 i
√

3

)
; r2 = −i

√
3

2
, ξ(2) =

(
1

2 i
√

3

)
.

The eigenvalues are purely imaginary. Hence the critical point is a center, which is
stable.
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(d,e)

(f) Except for solutions along the coordinate axes, almost all trajectories are closed
curves about the critical point (0.5 , 3).

2.(a)

(b) The critical points are the solution set of the system of equations

x(1− 0.5 y) = 0

y(−0.25 + 0.5x) = 0 .

The two critical points are (0 , 0) and (0.5 , 2).

(c) The Jacobian matrix of the vector field is

J =

(
1− y/2 −x/2
y/2 −1/4 + x/2

)
.

At the critical point (0 , 0), the coefficient matrix of the linearized system is

J(0 , 0) =

(
1 0
0 −1/4

)
.

The eigenvalues and eigenvectors are

r1 = 1 , ξ(1) =

(
1

0

)
; r2 = −1/4 , ξ(2) =

(
0

1

)
.
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The eigenvalues are of opposite sign, hence the origin is a saddle, which is unstable.
At the critical point (0.5 , 2), the coefficient matrix of the linearized system is

J(0.5 , 2) =

(
0 −1/4
1 0

)
.

The eigenvalues and eigenvectors are

r1 = i/2 , ξ(1) =

(
1

−2 i

)
; r2 = −i/2 , ξ(2) =

(
1

2 i

)
.

The eigenvalues are purely imaginary. Hence the critical point is a center, which is
stable.

(d,e)

(f) Except for solutions along the coordinate axes, almost all trajectories are closed
curves about the critical point (0.5 , 2).

4.(a)

(b) The critical points are the solution set of the system of equations

x(9/8− x− y/2) = 0

y(−1 + x) = 0 .

The three critical points are (0 , 0), (9/8 , 0) and (1 , 1/4).
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(c) The Jacobian matrix of the vector field is

J =

(
9/8− 2x− y/2 −x/2

y −1 + x

)
.

At the critical point (0 , 0), the coefficient matrix of the linearized system is

J(0 , 0) =

(
9/8 0
0 −1

)
.

The eigenvalues and eigenvectors are

r1 = 9/8 , ξ(1) =

(
1

0

)
; r2 = −1 , ξ(2) =

(
0

1

)
.

The eigenvalues are of opposite sign, hence the origin is a saddle, which is unstable.
At the critical point (9/8 , 0), the coefficient matrix of the linearized system is

J(9/8 , 0) =

(
−9/8 −9/16

0 1/8

)
.

The eigenvalues and eigenvectors are

r1 = −9

8
, ξ(1) =

(
1

0

)
; r2 =

1

8
, ξ(2) =

(
9

−20

)
.

The eigenvalues are of opposite sign, hence the critical point (9/8 , 0) is a saddle,
which is unstable.
At the critical point (1 , 1/4), the coefficient matrix of the linearized system is

J(1 , 1/4) =

(
−1 −1/2
1/4 0

)
.

The eigenvalues and eigenvectors are

r1 =
−2 +

√
2

4
, ξ(1) =

(
−2 +

√
2

1

)
; r2 =

−2−
√

2

4
, ξ(2) =

(
−2−

√
2

1

)
.

The eigenvalues are both negative. Hence the critical point is a stable node, which
is asymptotically stable.

(d,e)



9.5 437

(f) Except for solutions along the coordinate axes, all solutions converge to the
critical point (1 , 1/4).

5.(a)

(b) The critical points are solutions of the system of equations

x(−1 + 2.5x− 0.3 y − x2) = 0

y(−1.5 + x) = 0 .

The four critical points are (0 , 0), (1/2 , 0), (2 , 0) and (3/2 , 5/3).

(c) The Jacobian matrix of the vector field is

J =

(
−1 + 5x− 3x2 − 3y/10 −3x/10

y −3/2 + x

)
.

At the critical point (0 , 0), the coefficient matrix of the linearized system is

J(0 , 0) =

(
−1 0
0 −3/2

)
.

The eigenvalues and eigenvectors are

r1 = −1 , ξ(1) =

(
1

0

)
; r2 = −3/2 , ξ(2) =

(
0

1

)
.

The eigenvalues are both negative, hence the critical point (0 , 0) is a stable node,
which is asymptotically stable.
At the critical point (1/2 , 0), the coefficient matrix of the linearized system is

J(1/2 , 0) =

(
3/4 −3/20
0 −1

)
.

The eigenvalues and eigenvectors are

r1 =
3

4
, ξ(1) =

(
1

0

)
; r2 = −1 , ξ(2) =

(
3

35

)
.

The eigenvalues are of opposite sign, hence the critical point (1/2 , 0) is a saddle,
which is unstable.
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At the critical point (2 , 0), the coefficient matrix of the linearized system is

J(2 , 0) =

(
−3 −3/5
0 1/2

)
.

The eigenvalues and eigenvectors are

r1 = −3 , ξ(1) =

(
1

0

)
; r2 = 1/2 , ξ(2) =

(
6

−35

)
.

The eigenvalues are of opposite sign, hence the critical point (2 , 0) is a saddle,
which is unstable.
At the critical point (3/2 , 5/3), the coefficient matrix of the linearized system is

J(3/2 , 5/3) =

(
−3/4 −9/20
5/3 0

)
.

The eigenvalues and eigenvectors are

r1 =
−3 + i

√
39

8
, ξ(1) =

(−9+i 3
√

39
40

1

)
; r2 =

−3− i
√

39

8
, ξ(2) =

(−9−i 3
√

39
40

1

)
.

The eigenvalues are complex conjugates. Hence the critical point (3/2 , 5/3) is a
stable spiral, which is asymptotically stable.

(d,e)

(f) The single solution curve that converges to the node at (1/2 , 0) is a separatrix.
Except for initial conditions on the coordinate axes, trajectories on either side of
the separatrix converge to the node at (0 , 0) or the stable spiral at (3/2 , 5/3).

6. Given that t is measured from the time that x is a maximum, we have

x =
c

γ
+
cK

γ
cos(
√
ac t)

y =
a

α
+K

a

α

√
c

α
sin(
√
ac t) .

(a) Since sin θ reaches a maximum at θ = π/2, y reaches a maximum at
√
ac t = π/2,

or t = π/(2
√
ac) = T/4, where T = 2π/

√
ac is the period of oscillation.
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(b) Note that
dx

dt
= −cK

√
ac

γ
sin(
√
ac t).

Since sin θ reaches a minimum of −1 at θ = 3π/2, 7π/2, . . ., x is increasing most
rapidly at

√
ac t = 3π/2, 7π/2, . . ., or t = 3T/4, 7T/4, . . .. Since sin θ reaches a maxi-

mum of 1 at θ = π/2, 5π/2, . . ., x is decreasing most rapidly at
√
ac t = π/2, 5π/2, . . .,

or t = T/4, 5T/4, . . .. Since cos θ reaches a minimum at θ = π, 3π, . . ., x reaches a
minimum at

√
ac t = π, 3π, . . ., or t = T/2, 3T/2, . . ..

(c) Note that
dy

dt
= Kc

( a
α

)3/2

cos(
√
ac t).

Since cos θ reaches a minimum of −1 at θ = π, 3π, . . ., y is decreasing most rapidly
at
√
ac t = π, 3π, . . ., or t = T/2, 3T/2, . . .. Since cos θ reaches a maximum of 1 at

θ = 0, 2π, . . ., y is increasing most rapidly at
√
ac t = 0, 2π, . . ., or t = 0, T, . . .. Since

sin θ reaches a minimum at θ = 3π/2, 7π/2, . . ., y reaches a minimum at
√
ac t =

3π/2, 7π/2, . . ., or t = 3T/4, 7T/4, . . ..

(d) In the following example, the system in Problem 2 is solved numerically with
the initial conditions x(0) = 0.7 and y(0) = 2 . The critical point of interest is
at (0.5 , 2). Since a = 1 and c = 1/4 , it follows that the period of oscillation is
T = 4π .

8.(a) The period of oscillation for the linear system is T = 2π/
√
ac . In system (2),

a = 1 and c = 0.75 . Hence the period is estimated as T = 2π/
√

0.75 ≈ 7.2552 .

(b) The estimated period appears to agree with the graphic in Figure 9.5.3.

(c) The critical point of interest is at (3 , 2). The system is solved numerically, with
y(0) = 2 and x(0) = 3.5 , 4.0 , 4.5 , 5.0 . The resulting periods are shown in the table:

x(0) = 3.5 x(0) = 4.0 x(0) = 4.5 x(0) = 5.0

T 7.26 7.29 7.34 7.42

The actual period steadily increases as x(0) increases.
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9. The system
dx

dt
= a x(1− y

2
)

dy

dt
= b y(−1 +

x

3
)

is solved numerically for various values of the parameters. The initial conditions
are x(0) = 5 , y(0) = 2 .

(a) a = 1 and b = 1 :

The period is estimated by observing when the trajectory becomes a closed curve.
In this case, T ≈ 6.45 .

(b) a = 3 and a = 1/3 , with b = 1 :

For a = 3 , T ≈ 3.69 . For a = 1/3 , T ≈ 11.44 .

(c) b = 3 and b = 1/3 , with a = 1 :
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For b = 3 , T ≈ 3.82 . For b = 1/3 , T ≈ 11.06 .

(d) It appears that if one of the parameters is fixed, the period varies inversely with
the other parameter. Hence one might postulate the relation

T =
k

f(a , b)
.

10.(a) Since T = 2π/
√
ac , we first note that

∫ A+T

A

cos(
√
ac t+ φ)dt =

∫ A+T

A

sin(
√
ac t+ φ)dt = 0 .

Hence

x =
1

T

∫ A+T

A

c

γ
dt =

c

γ
and y =

1

T

∫ A+T

A

a

α
dt =

a

α
.

(b) One way to estimate the mean values is to find a horizontal line such that
the area above the line is approximately equal to the area under the line. From
Figure 9.5.3, it appears that x ≈ 3.25 and y ≈ 2.0 . In Example 1 , a = 1 , c = 0.75 ,
α = 0.5 and γ = 0.25 . Using the result in part (a), x = 3 and y = 2 .

(c) The system

dx

dt
= x(1− y

2
)

dy

dt
= y(−3

4
+
x

4
)

is solved numerically for various initial conditions.

x(0) = 3 and y(0) = 2.5 :

x(0) = 3 and y(0) = 3.0 :
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x(0) = 3 and y(0) = 3.5 :

x(0) = 3 and y(0) = 4.0 :

It is evident that the mean values increase as the amplitude increases. That is, the
mean values increase as the initial conditions move farther from the critical point.

12.(a) The critical points are the solutions of the system

x(a− σx− αy) = 0

y(−c+ γx) = 0.

If x = 0, then y = 0. If y = 0, then x = a/σ. The third solution is found by
substituting x = c/γ into the first equation. This implies that y = a/α− σc/(γα).
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So the critical points are (0, 0), ( aσ , 0) and ( cγ ,
a
α −

σc
γα ). When σ is increasing, the

critical point ( aσ , 0) moves to the left and the critical point ( cγ ,
a
α −

σc
γα ) moves down.

The assumption a > σc
γ is necessary for the third critical point to be in the first

quadrant. (When a = σc
γ , then the two nonzero critical points coincide.)

(b,c) The Jacobian of the system is

J =

(
a− 2σx− αy −αx

γy −c+ γx

)
.

This implies that at the origin

J(0, 0) =

(
a 0
0 −c

)
,

which implies that the origin is a saddle point. (a > 0 and c > 0 by our assumption.)
At the critical point ( aσ , 0)

J(
a

σ
, 0) =

(
−a −αa/σ
0 −c+ γa/σ

)
,

which implies that this critical point is also a saddle as long as our assumption
a > σc

γ is valid.

At the critical point ( cγ ,
a
α −

σc
γα )

J(
c

γ
,
a

α
− σc

γα
) =

(
−σc/γ −αc/γ

γa/α− σc/α 0

)
.

The eigenvalues of the matrix are

−cσ ±
√
c2σ2 + 4c2γσ − 4acγ2

2γ
.

We set the discriminant equal to zero and find that the greater solution is

σ1 = −2γ +
2γ
√
ac+ c2

c
.

First note that σ1 > 0, since
√
ac+ c2 > c. Next we note that σ1 < aγ/c. Since√

ac+ c2 <

√
a2

4
+ ac+ c2 =

a

2
+ c,

we see that

σ1 = −2γ +
2γ
√
ac+ c2

c
< −2γ +

2γ

c

(a
2

+ c
)

= −2γ +
aγ

c
+ 2γ =

aγ

c
.

For 0 < σ < σ1, the eigenvalues will be complex conjugates with negative real part,
so the critical point will be an asymptotically stable spiral point. For σ = σ1, the
eigenvalues will be repeated and negative, so the critical point will be an asymp-
totically stable spiral point or node. For σ1 < σ < ac/γ, the eigenvalues will be
distinct and negative, so the critical point will be an asymptotically stable node.
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(d) Since the third critical point is asymptotically stable for 0 < σ < ac/γ, and
the other critical points are saddle points, the populations will coexist for all such
values of σ.

13.(a) The critical points are the solutions of the system

x(1− x

5
− 2y

x+ 6
) = 0

y(−1

4
+

x

x+ 6
) = 0.

If x = 0, then y = 0. If y = 0, then x = 5. The third critical point can be found by
setting 1/4 = x/(x+ 6), which gives x = 2 and then y = 2.4. So the critical points
are (0, 0), (5, 0) and (2, 2.4).

(b) The Jacobian of the system is

J =

(
1− 2x

5 −
12y

(x+6)2 − 2x
x+6

6y
(x+6)2 − 1

4 + x
x+6

)
.

This implies that at the origin

J(0, 0) =

(
1 0
0 −1/4

)
,

which implies that the origin is a saddle point.
At the critical point (5, 0)

J(5, 0) =

(
−1 −10/11
0 9/44

)
,

which implies that this critical point is also a saddle point.
At the critical point (2, 2.4)

J(2, 2.4) =

(
−1/4 −1/2
9/40 0

)
,

whose eigenvalues are complex with negative real part, which implies that this
critical point is an asymptotically stable spiral.
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15.(a) Solving for the equilibrium of interest we obtain

x =
E2 + c

γ
y =

a

α
− σ

α
· E2 + c

γ
− E1

α
.

So if E1 > 0 and E2 = 0, then we have the same amount of prey and fewer predators.

(b) If E1 = 0 and E2 > 0, then we have more prey and fewer predators.

(c) If E1 > 0 and E2 > 0, then we have more prey and even fewer predators.

16.(b) The equilibrium solutions are given by the solutions of the system

x(1− y

2
) = H1

y(−3

4
+
x

4
) = H2.

Now if H2 = 0, then x = 3 and the first equation gives y = 2− 2H1/3. This means
we have the same amount of prey and fewer predators.

(c) If H1 = 0, then y = 2 and the second equation gives x = 3 + 2H2. This means
we have the same amount of predators and more prey.

(d) If H1 > 0 and H2 > 0, then the second equation gives (x− 3)y = 4H2 and
using this we obtain from the first equation that x(1− 2H2

x−3 ) = H1. This gives the

quadratic equation x2 − (3 + 2H2 +H1)x+ 3H1 = 0. Now at the old value x = 3
this expression is −6H2, so there is a root which is bigger than x = 3. The other
root of the quadratic equation is closer to 0, so the equilibrium increases here: we
have more prey. (Check this with e.g. H1 = H2 = 1: the roots are 3±

√
6, so both

of the original roots get bigger.) A similar analysis shows that we will have fewer
predators in this case.

9.6

2. We consider the function V (x, y) = a x2 + c y2 . The rate of change of V along
any trajectory is

V̇ = Vx
dx

dt
+ Vy

dy

dt
= 2ax(−1

2
x3 + 2xy2) + 2cy(−y3) = −ax4 + 4ax2y2 − 2cy4.

Let us complete the square now the following way:

V̇ = −ax4 + 4ax2y2 − 2cy4 = −a(x4 − 4x2y2)− 2cy4 =

= −a(x2 − 2y2)2 + 4ay4 − 2cy4 = −a(x2 − 2y2)2 + (4a− 2c)y4.

If a > 0 and c > 0 , then V (x, y) is positive definite. Clearly, if 4a− 2c < 0, i.e.
when c > 2a, then V̇ (x, y) is negative definite. One such example is V (x, y) =
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x2 + 3 y2. It follows from Theorem 9.6.1 that the origin is an asymptotically stable
critical point.

4. Given V (x, y) = a x2 + c y2 , the rate of change of V along any trajectory is

V̇ = Vx
dx

dt
+ Vy

dy

dt
= 2ax(x3 − y3) + 2cy(2xy2 + 4x2y + 2y3) =

= 2a x4 + (4c− 2a)xy3 + 8c x2y2 + 4c y4.

Setting a = 2c ,

V̇ = 4c x4 + 8c x2y2 + 4c y4 ≥ 4c x4 + 4c y4.

As long as a = 2c > 0 , the function V (x, y) is positive definite and V̇ (x, y) is also
positive definite. It follows from Theorem 9.6.2 that (0 , 0) is an unstable critical
point.

5. Given V (x, y) = c(x2 + y2) , the rate of change of V along any trajectory is

V̇ = Vx
dx

dt
+ Vy

dy

dt
= 2c x [y − xf(x, y)] + 2cy [−x− yf(x, y)] = −2c(x2 + y2)f(x, y) .

If c > 0 , then V (x, y) is positive definite. Furthermore, if f(x, y) is positive in some
neighborhood of the origin, then V̇ (x, y) is negative definite. Theorem 9.6.1 asserts
that the origin is an asymptotically stable critical point. On the other hand, if
f(x, y) is negative in some neighborhood of the origin, then V (x, y) and V̇ (x, y) are
both positive definite. It follows from Theorem 9.6.2 that the origin is an unstable
critical point.

9.(a) Letting x = u and y = u ′, we obtain the system of equations

dx

dt
= y

dy

dt
= −g(x)− y .

Since g(0) = 0 , it is evident that (0 , 0) is a critical point of the system. Consider
the function

V (x, y) =
1

2
y2 +

∫ x

0

g(s)ds .

It is clear that V (0, 0) = 0 . Since g(u) is an odd function in a neighborhood of
u = 0 , ∫ x

0

g(s)ds > 0 for x > 0 ,

and ∫ x

0

g(s)ds = −
∫ 0

x

g(s)ds > 0 for x < 0 .

Therefore V (x, y) is positive definite. The rate of change of V along any trajectory
is

V̇ = Vx
dx

dt
+ Vy

dy

dt
= g(x) · (y) + y [−g(x)− y] = −y2 .
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It follows that V̇ (x, y) is only negative semidefinite. Hence the origin is a stable
critical point.

(b) Given

V (x, y) =
1

2
y2 +

1

2
y sin(x) +

∫ x

0

sin(s)ds ,

It is easy to see that V (0 , 0) = 0 . The rate of change of V along any trajectory is

V̇ = Vx
dx

dt
+ Vy

dy

dt
=
[
sin x+

y

2
cos x

]
(y) +

[
y +

1

2
sin x

]
[− sin x− y] =

=
1

2
y2 cos x− 1

2
sin2 x− y

2
sin x− y2 .

For −π/2 < x < π/2 , we can write sin x = x− αx3/6 and cos x = 1− β x2/2 , in
which α = α(x) , β = β(x) . Note that 0 < α , β < 1 . Then

V̇ (x , y) =
y2

2
(1− β x2

2
)− 1

2
(x− αx3

6
)2 − y

2
(x− αx3

6
)− y2 .

Using polar coordinates,

V̇ (r , θ) = −r
2

2
[1 + sin θ cos θ + h(r , θ)] = −r

2

2

[
1 +

1

2
sin 2θ + h(r , θ)

]
.

It is easy to show that

|h(r , θ)| ≤ 1

2
r2 +

1

72
r4.

So if r is sufficiently small, then |h(r , θ)| < 1/2 and
∣∣ 1

2 sin 2θ + h(r , θ)
∣∣ < 1 . Hence

V̇ (x , y) is negative definite. Now we show that V (x, y) is positive definite. Since
g(u) = sin u ,

V (x, y) =
1

2
y2 +

1

2
y sin(x) + 1− cos x .

This time we set

cos x = 1− x2

2
+ γ

x4

24
.

Note that 0 < γ < 1 for −π/2 < x < π/2 . Converting to polar coordinates,

V (r, θ) =
r2

2

[
1 + sin θ cos θ − r2

12
sin θ cos3 θ − γ r

2

24
cos4 θ

]
=
r2

2

[
1 +

1

2
sin 2θ − r2

12
sin θ cos3 θ − γ r

2

24
cos4 θ

]
.

Now

− r
2

12
sin θ cos3 θ − γ r

2

24
cos4 θ > −1

8
for r < 1 .

It follows that when r > 0 ,

V (r, θ) >
r2

2

[
7

8
+

1

2
sin 2θ

]
≥ 3 r2

16
> 0 .
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Therefore V (x, y) is indeed positive definite, and by Theorem 9.6.1 , the origin is
an asymptotically stable critical point.

12.(a) We consider the linear system(
x

y

)′
=

(
a11 a12

a21 a22

)(
x

y

)
.

Let V (x, y) = Ax2 +Bxy + Cy2, in which

A = −a
2
21 + a2

22 + (a11a22 − a12a21)

2∆

B =
a12a22 + a11a21

∆

C = −a
2
11 + a2

12 + (a11a22 − a12a21)

2∆
,

and ∆ = (a11 + a22)(a11a22 − a12a21). Based on the hypothesis, the coefficients A
and B are negative. Therefore, except for the origin, V (x, y) is negative on each of
the coordinate axes. Along each trajectory,

V̇ = (2Ax+By)(a11 x+ a12 y) + (2Cy +Bx)(a21 x+ a22 y) = −x2 − y2.

Hence V̇ (x, y) is negative definite. Theorem 9.6.2 asserts that the origin is an
unstable critical point.

(b) We now consider the system(
x

y

)′
=

(
a11 a12

a21 a22

)(
x

y

)
+

(
F1(x , y)

G1(x , y)

)
,

in which F1(x , y)/r → 0 and G1(x , y)/r → 0 as r → 0 . Let

V (x, y) = Ax2 +Bxy + Cy2,

in which

A =
a2

21 + a2
22 + (a11a22 − a12a21)

2∆

B = −a12a22 + a11a21

∆

C =
a2

11 + a2
12 + (a11a22 − a12a21)

2∆
,

and ∆ = (a11 + a22)(a11a22 − a12a21). Based on the hypothesis, A ,B > 0 . Ex-
cept for the origin, V (x, y) is positive on each of the coordinate axes. Along each
trajectory,

V̇ = x2 + y2 + (2Ax+By)F1(x , y) + (2Cy +Bx)G1(x , y) .

Converting to polar coordinates, for r 6= 0 ,

V̇ = = r2 + r(2A cos θ +B sin θ)F1 + r(2C sin θ +B cos θ)G1

= r2 + r2

[
(2A cos θ +B sin θ)

F1

r
+ (2C sin θ +B cos θ)

G1

r

]
.
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Since the system is almost linear, there is an R such that∣∣∣∣(2A cos θ +B sin θ)
F1

r
+ (2C sin θ +B cos θ)

G1

r

∣∣∣∣ < 1

2
,

and hence

(2A cos θ +B sin θ)
F1

r
+ (2C sin θ +B cos θ)

G1

r
> −1

2

for r < R . It follows that

V̇ >
1

2
r2

as long as 0 < r < R . Hence V̇ is positive definite on the domain

D =
{

(x , y) |x2 + y2 < R2
}
.

By Theorem 9.6.2, the origin is an unstable critical point.

9.7

3. The critical points of the ODE

dr

dt
= r(r − 1)(r − 3)

are given by r1 = 0 , r2 = 1 and r3 = 3 . Note that

dr

dt
> 0 for 0 < r < 1 and r > 3 ;

dr

dt
< 0 for 1 < r < 3 .

r = 0 corresponds to an unstable critical point. The critical point r2 = 1 is asymp-
totically stable, whereas the critical point r3 = 3 is unstable. Since the critical
values are isolated, a limit cycle is given by

r = 1 , θ = t+ t0

which is asymptotically stable. Another periodic solution is found to be

r = 3 , θ = t+ t0

which is unstable.

5. The critical points of the ODE

dr

dt
= sin πr

are given by r = n , n = 0 , 1 , 2 , . . . . Based on the sign of r ′ in the neighborhood of
each critical value, the critical points r = 2k , k = 1 , 2 , . . . correspond to unstable
periodic solutions, with θ = t+ t0 . The critical points r = 2k + 1 , k = 0 , 1 , 2 , . . .
correspond to stable limit cycles, with θ = t+ t0 . The solution r = 0 represents
an unstable critical point.
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6. The critical points of the ODE

dr

dt
= r|r − 2|(r − 3)

are given by r1 = 0 , r2 = 2 and r3 = 3 . Note that

dr

dt
< 0 for 0 < r < 3 ;

dr

dt
> 0 for r > 3 .

r = 0 corresponds to an asymptotically stable critical point. The critical points
r2 = 2 is semistable, whereas the critical point r3 = 3 is unstable. Since the critical
values are isolated, a semistable limit cycle is given by

r = 2 , θ = −t+ t0.

Another periodic solution is found to be

r = 3 , θ = −t+ t0

which is unstable.

10. Given F (x , y) = a11 x+ a12 y and G(x , y) = a21 x+ a22 y , it follows that

Fx +Gy = a11 + a22 .

Based on the hypothesis, Fx +Gy is either positive or negative on the entire plane.
By Theorem 9.7.2, the system cannot have a nontrivial periodic solution.

12. Given that F (x , y) = −2x− 3y − xy2 and G(x , y) = y + x3 − x2y ,

Fx +Gy = −1− x2 − y2.

Since Fx +Gy < 0 on the entire plane, Theorem 9.7.2 asserts that the system
cannot have a nontrivial periodic solution.

14.(a) Based on the given graphs, the following table shows the estimated values:

µ = 0.2 T ≈ 6.29

µ = 1.0 T ≈ 6.66

µ = 5.0 T ≈ 11.60

(b) The initial conditions were chosen as x(0) = 2 , y(0) = 0 .
For µ = 0.5, T ≈ 6.38 :
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For µ = 2, T ≈ 7.65 :

For µ = 3, T ≈ 8.86 :

For µ = 5, T ≈ 10.25 :

(c) The period, T , appears to be a quadratic function of µ .
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15.(a) Setting x = u and y = u ′, we obtain the system of equations

dx

dt
= y

dy

dt
= −x+ µ(1− 1

3
y2)y .

(b) Evidently, y = 0 . It follows that x = 0 . Hence the only critical point of the
system is at (0 , 0). The components of the vector field are infinitely differentiable
everywhere. Therefore the system is almost linear. The Jacobian matrix of the
vector field is

J =

(
0 1
−1 µ− µy2

)
.

At the critical point (0 , 0), the coefficient matrix of the linearized system is

J(0 , 0) =

(
0 1
−1 µ

)
,

with eigenvalues

r1,2 =
µ

2
± 1

2

√
µ2 − 4 .

If µ = 0 , the equation reduces to the ODE for a simple harmonic oscillator. For the
case 0 < µ < 2 , the eigenvalues are complex, and the critical point is an unstable
spiral. For µ ≥ 2 , the eigenvalues are real, and the origin is an unstable node.

(c) The initial conditions were chosen as x(0) = 2 , y(0) = 0 .

µ = 1: A ≈ 2.16 and T ≈ 6.65 .
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(d)

µ = 0.2: A ≈ 2.00 and T ≈ 6.30 .

µ = 0.5: A ≈ 2.04 and T ≈ 6.38 .

µ = 2: A ≈ 2.6 and T ≈ 7.62 .

µ = 5: A ≈ 4.37 and T ≈ 11.61 .
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(e)

A T

µ = 0.2 2.00 6.30
µ = 0.5 2.04 6.38

µ = 1.0 2.16 6.65

µ = 2.0 2.6 7.62

µ = 5.0 4.37 11.61

16.(a) The critical points are solutions of the algebraic system

µx+ y − x(x2 + y2) = 0

−x+ µ y − y(x2 + y2) = 0 .

Multiply the first equation by y and the second equation by x to obtain

µxy + y2 − xy(x2 + y2) = 0

−x2 + µxy − xy(x2 + y2) = 0 .

Subtraction of the two equations results in

x2 + y2 = 0 ,

which is satisfied only for x = y = 0 .

(b) The Jacobian matrix of the vector field is

J =

(
µ− 3x2 − y2 1− 2xy
−1− 2xy µ− x2 − 3y2

)
.

At the critical point (0 , 0), the coefficient matrix of the linearized system is

J(0 , 0) =

(
µ 1
−1 µ

)
,

resulting in the linear system

x ′ = µx+ y

y ′ = −x+ µ y .
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The characteristic equation for the coefficient matrix is λ2 − 2µλ+ µ2 + 1 = 0 ,
with solution

λ = µ ± i .

For µ < 0 , the origin is a stable spiral. When µ = 0 , the origin is a center. For
µ > 0 , the origin is an unstable spiral.

(c) Introduce polar coordinates r and θ , so that x = r cos θ and y = r sin θ for
r ≥ 0. Multiply the first of Eqns (i) by x and the second equation by y to obtain

xx ′ = µx2 + xy − x2(x2 + y2)

y y ′ = −xy + µ y2 − y2(x2 + y2) .

Addition of the two equations results in

xx ′ + y y ′ = µ(x2 + y2)− (x2 + y2)2.

Since r2 = x2 + y2 and r r ′ = xx ′ + y y ′, it follows that r r ′ = µ r2 − r4 and

dr

dt
= µ r − r3

for r > 0 . Multiply the first of Eqns (i) by y and the second equation by x, the
difference of the two equations results in

y x ′ − x y ′ = x2 + y2.

Since y x ′ − x y ′ = −r2 θ ′, the above equation reduces to

dθ

dt
= −1 .

(d) From r ′ = r(µ− r2) and θ ′ = −1 , it follows that one solution of the system is
given by

r =
√
µ and θ = −t+ t0

valid for µ > 0 . This corresponds to a periodic solution with a circular trajectory.
Since r ≥ 0 , observe that

dr

dt
= r(µ− r2) < 0 for r >

√
µ

= r(µ− r2) > 0 for
√
µ > r > 0 .

Hence solutions with initial condition r(0) 6= √µ are attracted to the limit cycle.

17.(a) The critical points are solutions of the algebraic system

y = 0

−x+ µ (1− x2)y = 0 .

Clearly, y = 0, and this implies that x = 0. So the origin is the only critical point.
The Jacobian matrix of the vector field is

J =

(
0 1

−1− 2µxy µ(1− x2)

)
.



456 Chapter 9. Nonlinear Differential Equations and Stability

At the critical point (0 , 0), the coefficient matrix of the linearized system is

J(0 , 0) =

(
0 1
−1 µ

)
.

The characteristic equation is λ2 − µλ+ 1 = 0, and the roots are

λ =
µ±

√
µ2 − 4

2
.

This implies that the origin is an asymptotically stable node for µ < −2, an asymp-
totically stable spiral point for −2 < µ < 0, an unstable spiral point for 0 < µ < 2
and an unstable node for µ > 2.

(b)

(c)

(a) µ = −2.5 (b) µ = −2 (c) µ = −1.5 (d) µ = −0.5
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(d)

(a) µ = −0.2 (b) µ = −0.1 (c) µ = 0.1 (d) µ = 0.2

19.(a) The critical points are solutions of the algebraic system

x(a− x

5
− 2y

x+ 6
) = 0

y(−1

4
+

x

x+ 6
) = 0 .

If x = 0, then y = 0. If y = 0, then x = 5a from the first equation. The third critical
point comes from x = 2, and then the first equation implies that y = 4a− 8/5. So
the critical points are (0, 0), (5a, 0) and (2, 4a− 8/5).

(b) The Jacobian matrix of the vector field is

J =

(
a− 2x

5 −
12y

(x+6)2 − 2x
x+6

6y
(x+6)2 − 1

4 + x
x+6

)
.

At the critical point (2 , 4a− 8/5), the coefficient matrix of the linearized system is

J(2 , 4a− 8/5) =

(
a/4− 1/2 −1/2

3a/8− 3/20 0

)
.

The characteristic equation is λ2 + λ(1/2− a/4) + (3a/8− 3/20)/2 = 0, and the
roots are

λ =
a

8
− 1

4
± 1

2

√
a2

16
− a+

11

20
.

We can conclude that a0 = 2.
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(c)

20.(a) The critical points are solutions of the algebraic system

1− (b+ 1)x+ x2y/4 = 0

b x− x2y/4 = 0 .

Add the two equations to obtain 1− x = 0 , with solution x = 1 . The second of
the above equations yields y = 4 b .

(b) The Jacobian matrix of the vector field is

J =
1

4

(
−4(b+ 1) + 2xy x2

4b− 2xy −x2

)
.

At the critical point (1 , 4b), the coefficient matrix of the linearized system is

J(1 , 4b) =

(
b− 1 1/4
−b −1/4

)
,

with characteristic equation

λ2 + (
5

4
− b)λ+

1

4
= 0

and eigenvalues

λ = −5− 4b ±
√

9− 40 b+ 16 b2

8
= −

(5/4− b) ±
√

(5/4− b)2 − 1

2
.

(c) Let L = 5/4− b . The eigenvalues can be expressed as

λ = −L ±
√
L 2 − 1

2
.

We find that the eigenvalues are real if L 2 ≥ 1 and are complex if L 2 < 1 .
For the complex case, that is, −1 < L < 1 , the critical point is a stable spiral if
0 < L < 1 ; it is an unstable spiral if −1 < L < 0 . That is, the critical point is an
asymptotically stable spiral if 1/4 < b < 5/4 and is an unstable spiral if 5/4 < b <
9/4 . When L 2 > 1 , the critical point is a node. The critical point is a stable
node if L > 1 ; it is an unstable node if L < −1 . That is, the critical point is an
asymptotically stable node if 0 < b < 1/4 and is an unstable node if b > 9/4 .
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(d) From part (c), the critical point changes from an asymptotically stable spiral
to an unstable spiral when b0 = 5/4 .

(e,f)

(a) b = 1 (b) b = 1.5 (c) b = 1.75 (d) b = 2

9.8

6. r = 28, with initial point (5 , 5 , 5):

r = 28, with initial point (5.01 , 5 , 5):
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7. r = 28 :

9.(a) r = 100 , initial point (−5 ,−13 , 55 ) :

The period appears to be T ≈ 1.12 .

(b) r = 99.94 , initial point (−5 ,−13 , 55 ) :

The periodic trajectory appears to have split into two strands, indicative of a period-
doubling. Closer examination reveals that the peak values of z(t) are slightly dif-
ferent.

r = 99.7, initial point (−5 ,−13 , 55 ) :
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(c) r = 99.6 , initial point (−5 ,−13 , 55 ) :

The strands again appear to have split. Closer examination reveals that the peak
values of z(t) are different.

10.(a) r = 100.5 , initial point (−5 ,−13 , 55 ) :

r = 100.7 , initial point (−5 ,−13 , 55 ) :
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(b) r = 100.8 , initial point (−5 ,−13 , 55 ) :

r = 100.81 , initial point (−5 ,−13 , 55 ) :

The strands of the periodic trajectory are beginning to split apart.

r = 100.82 , initial point (−5 ,−13 , 55 ) :
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r = 100.83 , initial point (−5 ,−13 , 55 ) :

r = 100.84 , initial point (−5 ,−13 , 55 ) :

12. The system is given by

x ′ = −y − z
y ′ = x+ y/4

z ′ = 1/2 + z(x− c) .

(a) We obtain that the critical points (when c2 > 1/2) are

(
c

2
+

1

4

√
4c2 − 2,−2c−

√
4c2 − 2, 2c+

√
4c2 − 2),

(
c

2
− 1

4

√
4c2 − 2,−2c+

√
4c2 − 2, 2c−

√
4c2 − 2).

The Jacobian of the system is

J =

0 −1 −1
1 1/4 0
z 0 x− c

 .

In the following computations, we approximate the values to 4 decimal points.
When c = 1.3, the two critical points are

(1.1954,−4.7817, 4.7817) and (0.1046,−0.4183, 0.4183).
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The corresponding eigenvalues of the Jacobian are

0.1893, −0.0219± 2.4007i and − 0.9613, 0.0080± 1.0652i.

(b)

(c)

(d) T1 ≈ 5.9.
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13.(b) Using the eigenvalue idea:

c Critical Point Complex Eigenvalue Pair

1.2 (0.1152,−0.4609, 0.4609) −0.0063± 1.0859i
1.25 (0.1096,−0.4384, 0.4384) 0.0010± 1.0747i

Clearly, somewhere in between we have a Hopf bifurcation. Similar computations
show that the bifurcation value is c ≈ 1.243.

14.(a) When c = 3, the two critical points are

(2.9577,−11.8310, 11.8310) and (0.0423,−0.1690, 0.1690).

The corresponding eigenvalues of the Jacobian are

0.2273, −0.0098± 3.5812i and − 2.9053, 0.0988± 0.9969i.

(b)

(c) T2 ≈ 11.8.

15.(a) When c = 3.8, the two critical points are

(3.7668,−15.0673, 15.0673) and (0.0332,−0.1327, 0.1327).



466 Chapter 9. Nonlinear Differential Equations and Stability

The corresponding eigenvalues of the Jacobian are

0.2324, −0.0078± 4.0078i and − 3.7335, 0.1083± 0.9941i.

(b) T4 ≈ 23.6.

(c)


