Exam 2 Solutions

Multiple Choice Questions

1. Consider the series $\sum_{n=1}^{\infty} \frac{e^n}{n!}$. If the ratio test is applied to the series, which of the following inequalities results, implying that the series converges?

A.
$$\lim_{n \to \infty} \frac{e}{n!} < 1$$

B.
$$\lim_{n \to \infty} \frac{n!}{e} < 1$$

C.
$$\lim_{n \to \infty} \frac{n+1}{e} < 1$$

D.
$$\lim_{n \to \infty} \frac{e}{n+1} < 1$$

E.
$$\lim_{n \to \infty} \frac{e}{(n+1)!} < 1$$

- 2. The interval of convergence of the power series $\sum_{n=0}^{\infty} \left(\frac{x}{3}\right)^n$ is
 - A. [0] B. $\left(-\frac{1}{3}, \frac{1}{3}\right)$ C. (-3, 3]D. (-3, 3)E. $(-\infty, +\infty)$

3. The sum of the infinite geometric series $1 + \frac{2}{5} + \frac{4}{25} + \frac{8}{125} + \frac{16}{625} + \cdots$ is

A. $\frac{3}{5}$ B. $\frac{2}{3}$ C. $\frac{5}{3}$ D. $\frac{3}{2}$ E. $\frac{5}{2}$

4. Which of the following sequences converge?

only

I.
$$\left\{\frac{5n}{2n-1}\right\}$$

II. $\left\{\frac{e^n}{n}\right\}$
III. $\left\{\frac{e^n}{1+e^n}\right\}$
A. I only
B. II only
C. I and II only
D. I and III only
E. I, II, and III

5. If $\lim_{M \to \infty} \int_{1}^{M} \frac{dx}{x^{p}}$ converges, then which of the following must be true? **A.** $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ **converges.** B. $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ diverges. C. $\sum_{n=1}^{\infty} \frac{1}{n^{p-2}}$ converges. D. $\sum_{n=1}^{\infty} \frac{1}{n^{p-1}}$ converges. E. $\sum_{n=1}^{\infty} \frac{1}{n^{p+1}}$ diverges.

6. A series $\sum a_n$ is convergent if and only if

A. the limit $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$ is greater than 1.

- B. its sequence of terms $\{a_n\}$ converges to 0.
- **C.** its sequence of partial sums $\{S_n\}$ converges to some real number.
- D. its sequence of terms $\{a_n\}$ is alternating.
- E. its sequence of partial sums $\{S_n\}$ is bounded.

- 7. Which of the following statements is true? (There is only one.)
 - A. If $0 \le b_n \le a_n$ and $\sum b_n$ converges then $\sum a_n$ converges. B. If $\lim_{n \to \infty} a_n = 0$ then the series $\sum a_n$ is convergent.
 - C. The series $\sum_{n=1}^{\infty} n^{-\sin 1}$ is convergent.
 - **D.** If $\sum a_n$ is convergent for $a_n > 0$ then $\sum (-1)^n a_n$ is also convergent.
 - E. The ratio test can be used to show that $\sum \frac{1}{n^{10}}$ converges.

8. Let S_N be the *N*-th partial sum of the series

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n-1}.$$

Thus,
$$S_1 = 1$$
, $S_2 = \frac{2}{3}$. Compute $S_{50} - S_{49}$.
A. $-\frac{1}{99}$.
B. $-\frac{1}{39}$

C. 1
D.
$$\frac{2}{9603}$$

E. 0

- 9. Consider the series $\sum_{n=1}^{\infty} \frac{3}{4^n + 6n 4}$. Applying the comparison test with the series
 - $\sum_{n=1}^{\infty} \frac{3}{4^n}$ leads to the following conclusion.
 - A. The test is inconclusive.
 - **B.** The series converges absolutely.
 - C. The series converges conditionally.
 - D. The series diverges.
 - E. The test cannot be applied to $a_n = \frac{3}{4^n + 6n 4}$ and $b_n = \frac{3}{4^n}$.

10. The radius of convergence for the series $\sum_{n=0}^{\infty} \frac{n^2 x^n}{10^n}$ is

- A. 1B. 1/10C. 10
- D. *n*/10
- E. ∞

11. The series $\sum_{n=0}^{\infty} \frac{n^2 + 1}{n^4 + 1}$

A. converges by the Ratio Test.

B. diverges by the Integral Test.

C. converges by the Limit Comparison Test with the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

- D. diverges by the Limit Comparison Test with the series $\sum_{n=1}^{\infty} \frac{1}{n}$.
- E. diverges because it does not alternate in sign.

12. The series $\sum_{n=1}^{\infty} \frac{\cos(\pi n)}{n^2}$ is

A. converges absolutely.

- B. converges conditionally.
- C. diverges.
- D. eventually oscillates between -1 and 1, but never converges.
- E. none of the above.

Free Response Questions

13. Find the first four (4) terms of each of the following sequences.

(a)	(6 points) $a_n = \frac{1}{(n+1)!}$		
	Solution:	$1, \frac{1}{2}, \frac{1}{3!}, \frac{1}{4!}$	

(b) (6 points)
$$a_1 = 2$$
 and $a_{n+1} = \frac{1}{3 - a_n}$

Solution:	$2, 1, \frac{1}{2}, \frac{2}{5}, \frac{5}{13}$	
	2, 1, 2, 5, 13	

- 14. Determine if the sequence is convergent or divergent. If convergent give its limit.
 - (a) (4 points) $a_n = \frac{n+1}{3n-1}$

Solution: The sequence converges.

$$\lim_{n \to \infty} \frac{n+1}{3n-1} = \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{3 - \frac{1}{n}} = \frac{1}{3}.$$

(b) (4 points) $a_n = n^2 e^{-n}$

Solution: The sequence converges.

$$\lim_{n\to\infty}\frac{n^2}{e^n}=0$$

(c) (4 points) $a_n = \frac{3^n}{2^n}$

Solution: The sequence diverges.

$$\lim_{n o\infty}rac{3^n}{2^n}=\lim_{n o\infty}\left(rac{3}{2}
ight)^n=+\infty.$$

MA 114

- 15. Determine the convergence or divergence of each of the following series. State clearly what test you used and show your work.
 - (a) (5 points) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$

Solution: This series diverges by the *p*-series test with p = 1/2.

(b) (5 points)
$$\sum_{n=1}^{\infty} \frac{\sin^2(n)}{n^3}$$

Solution:

$$\frac{\sin^2(n) \le 1}{\frac{\sin^2(n)}{n^3} \le \frac{1}{n^3}}$$

The latter series converges by the *p*-series test with p = 3, so the given series converges by the Comparison Test with the series $\sum \frac{1}{n^3}$.

(c) (5 points)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

Solution: Use the Ratio Test.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\frac{(n+1)^2}{2^{n+1}}}{\frac{n^2}{2^n}}$$
$$= \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^2 \frac{1}{2} = \frac{1}{2} < 1$$

Since the limit is less than 1, the series converges by the Ratio Test.

16. (5 points) Use the integral test to determine whether the series

$$\sum_{n=2}^{\infty} \frac{1}{n \ln(n)}$$

converges or diverges. Show your work and clearly state your answer.

Solution: Let
$$f(x) = \frac{1}{x \ln x}$$
. $f'(x) = -\frac{\ln x + 1}{x^2 (\ln x)^2} < 0$ for $x > 2$ so the function is decreasing. Let $u = \ln x$ then $du = \frac{dx}{x}$ and

$$\int_2^{\infty} \frac{1}{x \ln x} dx = \lim_{M \to \infty} \int_2^M \frac{1}{x \ln x} dx$$

$$= \lim_{M \to \infty} \int_{\ln 2}^M \frac{1}{u} du$$

$$= \lim_{M \to \infty} \ln u |_{\ln 2}^M$$

$$= \text{diverges}$$

Since the integral diverges, then the series also diverges.

17. (4 points) Use the comparison test to determine whether the series

$$\sum_{k=1}^{\infty} \frac{\ln k}{k}$$

converges or diverges.

Solution: For k > 3, $\ln k > 1$, so $\frac{\ln k}{k} > \frac{1}{k}$. $\sum \frac{1}{k}$ is the harmonic series and diverges, so by the Comparison Test, $\sum \frac{\ln k}{k}$ diverges.

18. A function f is defined by

$$f(x) = \frac{1}{3} + \frac{2}{3^2}x + \frac{3}{3^3}x^2 + \frac{4}{3^4}x^3 + \dots + \frac{n+1}{3^{n+1}}x^n + \dots = \sum_{n=0}^{\infty} \frac{n+1}{3^{n+1}}x^n.$$

for all *x* in the interval of convergence for the power series.

(a) (4 points) Find the radius of convergence for the power series. Show your work.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n+2}{n+1} \frac{|x^{n+1}|}{|x^n|} \frac{3^{n+1}}{3^{n+2}} = \frac{|x|}{3} < 1.$$

To converge we must have |x| < 3, so the radius of convergence is 3.

(b) (4 points) Find the interval of convergence for the power series. *Show your work.*

Solution: The radius of convergence is 3, so we need to check the endpoints: x = 3 and x = -3. At x = 3, we have

$$\sum_{n=0}^{\infty} \frac{n+1}{3^{n+1}} 3^n = \sum_{0}^{\infty} \frac{n+1}{3}$$

which diverges by the Divergence Test. Likewise, at x = -3

$$\sum_{n=0}^{\infty} \frac{n+1}{3^{n+1}} 3^n = \sum_{0}^{\infty} (-1)^n \frac{n+1}{3}$$

which also diverges by the Divergence Test.

Thus, the interval of convergence is -3 < x < 3 or (-3, 3).

(c) (4 points) Find the power series representation for f'(x) and state its radius of convergence.

Solution:

$$f'(x) = \sum_{n=1}^{\infty} \frac{n(n+1)}{3^{n+1}} x^{n-1} = \frac{2}{3^2} + \frac{2 \cdot 3}{3^3} x + \frac{3 \cdot 4}{3^4} x^2 + \dots + \frac{n(n+1)}{3^{n+1}} x^{n-1} + \dots$$

The radius of convergence does not change and remains at 3.

(d) (4 points) Find the power series representation for $\int f(x) dx$.

Solution:

$$\int f(x)dx = C + \sum_{n=0}^{\infty} \frac{x^{n+1}}{3^{n+1}} = C + \frac{x}{3} + \frac{x^2}{3^2} + \frac{x^3}{3^3} + \dots + \frac{x^n}{3^n} + \dots$$