Answer all questions in a clear and concise manner. Answers that are without explanations or are poorly presented may not receive full credit.

1. Determine whether the series $\sum_{n=2}^{\infty} \frac{\cos(n\pi)}{\sqrt{n}}$ is convergent or divergent.

Note that $\cos(n\pi) = (-1)^n$. Then $\sum_{n=2}^{\infty} \frac{\cos(n\pi)}{\sqrt{n}}$ is an alternating series. First, $a_n = 1/\sqrt{(n)}$ and $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$. Need to show that $a_{n+1} < a_n$ $\frac{1}{\sqrt{n+1}} < \frac{1}{\sqrt{n}}$ $\sqrt{n} < \sqrt{n+1}$, and thus a_n is decreasing. Therefore, we have convergence by the Alternating Series Test.

2. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n^2}}$ converges absolutely, converges conditionally or diverges.

Again we have an alternating series, and $a_n = \frac{1}{n^{2/3}}$. And the $\lim_{n \to \infty} \frac{1}{n^{2/3}} = 0$ Also need to show that $a_{n+1} < a_n$ $\frac{1}{(n+1)^{2/3}} < \frac{1}{n^{2/3}}$ $n^{2/3} < (n+1)^{2/3}$ n < n+1Therefore our series is convergent, Now consider $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2}}$. This is a p-integral with p < 1and so this series diverges. Thus we have conditional convergence.