MA 114 Worksheet #18: Volumes I

- 1. If a solid has a cross-sectional area given by the function A(x), what integral should be evaluated to find the volume of the solid?
- 2. Calculate the volume of the following solid. The base is a square, one of whose sides is the interval [0, l] along the x-axis. The cross sections perpendicular to the x-axis are rectangles of height $f(x) = x^2$.
- 3. Calculate the volume of the following solid. The base is the region enclosed by $y = x^2$ and y = 3. The cross sections perpendicular to the y-axis are squares.
- 4. The base of a certain solid is the triangle with vertices at (-10,5), (5,5), and the origin. Cross-sections perpendicular to the y-axis are squares. Find the volume of the solid.
- 5. Calculate the volume of the following solid. The base is a circle of radius r centered at the origin. The cross sections perpendicular to the x-axis are squares.
- 6. Calculate the volume of the following solid. The base is the parabolic region $\{(x,y) \mid x^2 \leq y \leq 4\}$. The cross sections perpendicular to the y-axis are right isosceles triangles whose hypotenuse lies in the region.
- 7. Sketch the solid given by the integral

$$\pi \int_0^1 (y^2 + 1)^2 - 1 \, dy.$$

- 8. For each of the following, use disks or washers to find the an integral expression for the volume of the region. Evaluate the integrals for parts (a) and (d).
 - (a) R is region bounded by $y = 1 x^2$ and y = 0; about the x-axis.
 - (b) R is region bounded by $y = \frac{1}{x}$, x = 1, x = 2, and y = 0; about the x-axis.
 - (c) R is region bounded by $x = 2\sqrt{y}$, x = 0, and y = 9; about the y-axis.
 - (d) R is region bounded by $y = 1 x^2$ and y = 0; about the line y = -1.
 - (e) Between the regions in part (a) and part (d), which volume is bigger? Why?
 - (f) R is region bounded by $y = e^{-x}$, y = 1, and x = 2; about the line y = 2.
 - (g) R is region bounded by y = x and $y = \sqrt{x}$; about the line x = 2.
- 9. Find the volume of the cone obtained by rotating the region under the segment joining (0, h) and (r, 0) about the y-axis.
- 10. The torus is the solid obtained by rotating the circle $(x-a)^2 + y^2 = b^2$ around the y-axis (assume that a > b). Show that it has volume $2\pi^2 ab^2$. [Hint: Draw a picture, set up the problem and evaluate the integral by interpreting it as the area of a circle.]