MA 114 Worksheet #27: Differential equations & Direction fields

- 1. (a) Is $y = \sin(3x) + 2e^{4x}$ a solution to the differential equation $y'' + 9y = 50e^{4x}$? Explain why or why not.
 - (b) Explain why every solution of $dy/dx = y^2 + 6$ must be an increasing function.
 - (c) What does is mean to say that a differential equation is linear or nonlinear.
- 2. Find all values of α so that $y(x) = e^{\alpha x}$ is a solution of the differential equation y'' + y' 12y = 0.

y' = 2 - y y' = x(2 - y) y' = x + y - 1 $y' = \sin(x)\sin(y)$

3. Match the differential equation with its slope field. Give reasons for your answer.

Figure 1: Slope fields for Problem 3

4. Use slope field labeled IV to sketch the graphs of the solutions that satisfy the given initial conditions

 $y(0) = -1, \quad y(0) = 0, \quad y(0) = 1.$

- 5. Sketch the slope field of the differential equation. Then use it to sketch a solution curve that passes through the given point
 - (a) y' = y 2x, (1,0)
 - (b) $y' = xy x^2$, (0, 1)
- 6. Use Eulers method with step size 0.5 to compute the approximate y-values, y_1 , y_2 , y_3 , and y_4 of the solution of the initial-value problem y' = y 2x, y(1) = 0.