	Graph A	Graph B	Graph C	Graph D
How many edges does this graph have?	12	9	10	8
What is the order of the graph (number of vertices)?	9	10	6	9
How many components does the graph have?	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$
Is the graph connected?	Yes	No	Yes	Yes
Is the graph simple? (no loops or multiple edges)	No	Yes	No	Yes
Is the graph a tree? (no circuits)	No	No	No	Yes
Find the degree of vertex A	$\mathbf{2}$	0	4	2
Find the degree of vertex B	4	2	4	1
Find the degree of vertex E	3	$\mathbf{2}$	3	$\mathbf{1}$

Graph A

Graph B

Graph D

For Graphs A, C and D, can you find an Euler Circuit or Euler path? (label it on the graph if you find one.) Graph A has an Euler path; starting and ending vertices are D and E. Graph C has an Euler path; starting and ending vertices are E and F. Graph D does not have an Euler path or circuit.

