Print all group member's names here. Circle the name of the group member who turns this in.

A survey of 75 automobiles parked on a university campus lot classified the brands by country of origin and by the type of parking permit (student or faculty/staff).
$\left.\begin{array}{|l|r|r|r|r|}\hline & \text { American car (A) } & \text { European car (E) } & \text { Asian car (N) } & \\ \hline \text { student (S) } & 25 & 10 & 15 & \\ \hline \text { faculty/staff (F) } & 9 & & 4 & 12\end{array}\right]$

1. Suppose we choose a car at random. Find the following probabilities (leave your answer as fractions; do not reduce):
a. $\quad P(S)$
b. $P(E)$
c. $\quad P(\bar{N})$
d. $\quad P(S \mid A)$
e. $\quad P(E \cap S)$
f. $\quad P(E \cap N)$
g. $\quad P(E \cup F)$
h. $\quad P(E \cup N)$
2. Are the events A and S independent or dependent? Justify your answer with the correct notation and computations. (a) use conditional probabilities; (b) use intersections
3. Are the events E and F independent or dependent? Justify your answer with the correct notation and computations. (a) use conditional probabilities; (b) use intersections
4. Now suppose we have a medical test with the following results:

	Positive test	Negative test	
Have the disease	37	13	
Do not have the disease	15	285	

Express each of these as a conditional probability (using the correct probability notation), and then give the answer as a fraction (no need to reduce):
(a) the sensitivity (the probability of a positive test, given that the patient has the disease):
(b) The specificity (the probability of a negative test, given that the patient is well):
(c) The PPV (positive predictive value, the probability they have the disease if they test positive):
(d) The NPV (Negative predictive value, the probability they are well if they test negative):
(e) The false positive rate (the probability the person tests positive, given that they do not have the disease):
(f) The false negative rate (the probability the person tests negative, given that they have the disease):

