Names:
I. Which of the following three graphs have Euler circuits? Which have an Euler path but no circuit? Which have neither? Briefly justify, but you do not need to actually find the circuit or path.

II. For each of the following graphs, Eulerize by adding only legal edges (i.e., duplicating existing edges). Try to find an optimal solution (duplicate the fewest number of edges). Hint: first label the degree of each vertex.

Graph A

Graph C

Graph B

Graph D

Graph E

III

III. For graph E above, find an Euler circuit on your new graph. Add the necessary edge(s), and then label your circuit by numbering the edges and drawing arrows to indicate direction.
IV. Suppose a graph has vertices with degrees $2,3,3,3,5$. How many edges does the graph have?
V. For each of these, construct a graph with the required properties.
a. Graph has six vertices, all of degree 2
b. Graph has six vertices, all of degree 1
c. Graph has six vertices, is connected, with degrees $2,2,2,3,3,4$.
d. Graph has seven vertices, is connected, and has an Euler path but no Euler circuit.

