Names:

(1)

A Who family wants to visit the Christmas light displays in a neighborhood of Whoville. Their car blows smoke when in reverse, so they don't want to retrace their steps any more than necessary. Find an optimal Eulerization of the graph. Do not find an Euler path or circuit.

How many edges need to be repeated? \qquad

Euler Circuit. Billy's newspaper route involves some streets with houses on only one side, and some streets with houses on both sides. He must travel on each gide of the street with subscribers separately.
Assume that in the diagram at right, the dots represent newspaper subscribers, and the space between the squares
 represent streets. Also assume that Billy cant travel on the streets with no subscribers - they are part of another boy's route, and he could get in trouble for
 poaching.
(a) Draw the graph which represents Billy's paper route.
(b) Eulerize this graph: first

$$
\begin{aligned}
& \text { redraw the graph; then } \\
& \text { repeat edges as needed. } \\
& \text { Do Not nod an Euler } \\
& \text { circuit }
\end{aligned}
$$

(a) For the street network.
draw a graph that would be useful for routing a garbage truck. Assume that all streets are two-way and that passing once down a street suffices to collect from both sides.
 sumption that one pass down the street only suffices to collect from one side.

Draw the graph for the parking-control territory shown in the figure below. Label each vertex with its depress valence and determine if the graph is connected.

6. Consider this graph.
(a) How many components does this graph have?
(b) Is this graph connected? Circle YES or NO
(c) Is this graph simple? Circle YES or NO
(d) Is this graph a tree? Circle YES or NO
\qquad

7. Consider this graph:
(a) Is this graph simple?

Circle YES or NO
(b) Is this graph connected?

Circle YES or NO
(c) Find the degree of each vertex (label on the graph)

(d) Does this graph have an Euler Circuit, an Euler path, or neither? (circle one)

Explain how you know this without actually finding a circuit or path.
Hint: look at the degrees of the vertices you found in part (c).
8. Find an Euler path for the following graph. Indicate your path by labeling with both arrows and numbers on the edges.

9. A graph has vertices with degrees $1,1,2,2,3,5$. How many edges does it have? Hint: use the formula that relates the degrees to the number of edges. Do not try to draw the graph.
10. Eulerize the following graph by adding LEGAL edges (i.e., duplicate exiting edges). Try to find an optimal Eulerization (duplicate the fewest possible edges). DO NOT actually find an Euler circuit.

How many edges did you add? \qquad

List the edges that you added: (For example, if you added an edge between vertices A and B, you'd write AB.)

11. Construct a simple, connected graph that has vertices A, B, C, D, E with degrees 3, 2, 2, 4, 1 respectively (i.e., $\operatorname{deg} A=3, \operatorname{deg} B=2$, etc.). Clearly label your vertices.
12. Construct a connected graph with 5 vertices and at least 8 edges that has an Euler path but no Euler circuit. Clearly label the degree of each vertex.
13. Construct a graph that is a tree that has six vertices, two of which have degree 3 .

Hint: a tree is a connected graph that contains no circuits.

