First rewrite the function in the form $y = ax^n$. Then find the derivative. ١.

1.
$$y = \frac{5}{x^3}$$
 2. $y = \sqrt[3]{x^{10}}$

3.
$$y = \frac{1}{5x^3}$$
 4. $y = \frac{7}{6\sqrt[5]{x^8}}$

Rewrite until you have the sum of a few terms, each of the form ax^n . Then find the derivative. II. (Do not use the product or quotient rule for these.)

5.
$$y = \frac{x^3 - 3x^2 + 5x + 2}{x^2}$$

6. $y = x^2 \left(x^3 + \sqrt{x} - \frac{1}{x^9} + 15 \right)$

Find the derivative. You *will* want the product or quotient rule. **Do not simplify** your answer. III. $(2\pi^2 + 2\pi - 2)(5 - 7 + 4)^3$ 8.

$$y = (3x^2 + 2x - 3)(5x^7 + 4x^3 - 2x + 1)$$

9.
$$y = \frac{8x^4 + 17}{7x^3 + 2x - 1}$$

The next functions will require the **chain rule**. IV.

10.
$$y = \frac{5}{\sqrt[7]{3x-5}}$$
 (Rewrite first!)

_

11.
$$y = (x^3 + 6)^{23}$$

12. $y = ((x^2 + 1)^4 + 3)^6 + 5x + 10$

V. Abstract Functions. We don't know who they are, but we can still find some derivatives...

- 13. Suppose f and g are differentiable functions which have the following values
 - a. Find h'(2) if $h(x) = \sqrt{f(x) + g(x)}$

x	f(x)	g(x)	f'(x)	g'(x)
2	5	4	7	-3
4	1	-2	9	8

b. Find h'(2) if h(x) = f(g(x))

- 14. Suppose the functions f(x) and g(x) and their first derivatives have the following values at x = 1 and x = 2. a. Find h'(2) if h(x) = f(x+g(x)).

x	f(x)	g(x)	f'(x)	g'(x)
1	6	1	-7	1/2
2	3	-1	1/2	-4

b. Find h'(1) if $h(x) = \frac{f(x) + 4g(x)}{(3x+1)^2}$.