I. Find the derivative. Do not simplify your answer.

1. $y=x^{4}+x^{e}+x^{\pi}+e^{x}+e^{\pi}+\ln x+\ln 5$
2. $y=x e^{3 x+5}$
3. $y=\ln \left(2 x^{3}+\sqrt{x}\right)$
4. $y=\frac{e^{4 x^{2}+1}}{13 x-8}$
5. $y=5 e^{\sqrt[3]{2 x^{7}-5 x+3}}$
II. Find the second derivative, $\frac{d^{2} y}{d x^{2}}$. You should simplify the first derivative a bit before you differentiate again, but do not simplify the second derivative.
6. $y=\left(e^{2 x}+8\right)^{7}$
7. $y=\ln (3 x+1)$

III. Abstract Functions.

8. Suppose $h(x)=\ln (f(x))$, and the equation of the tangent line to $f(x)$ at $x=2$ is given by $y=30 x-55$. Find $h^{\prime}(2)$.
9. Suppose f and g are differentiable functions which have the following values
a. Find $h^{\prime}(1)$ if $h(x)=f(\ln x)+\ln (g(x))$

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
0	16	-9	8	14
1	5	3	7	-6

b. Find $h^{\prime}(1)$ if $h(x)=x^{2} e^{f(x)}$

