I. Find the derivative. **Do NOT SIMPLIFY** your answer.

1.
$$y = x^4 + x^e + x^{\pi} + e^x + e^{\pi} + \ln x + \ln 5$$

2.
$$y = xe^{3x+5}$$

$$3. \quad y = \ln\left(2x^3 + \sqrt{x}\right)$$

4.
$$y = \frac{e^{4x^2+1}}{13x-8}$$

5.
$$y = 5e^{\sqrt[3]{2x^7 - 5x + 3}}$$

II. Find the **second derivative**, $\frac{d^2y}{dx^2}$. You should simplify the first derivative a bit before you differentiate again, but do not simplify the second derivative.

6.
$$y = (e^{2x} + 8)^7$$

$$7. \quad y = \ln(3x+1)$$

- III. Abstract Functions.
 - 8. Suppose $h(x) = \ln(f(x))$, and the equation of the tangent line to f(x) at x = 2 is given by y = 30x 55. Find h'(2).

- 9. Suppose f and g are differentiable functions which have the following values
 - a. Find h'(1) if $h(x) = f(\ln x) + \ln(g(x))$

х	f(x)	g(x)	f'(x)	g'(x)
0	16	-9	8	14
1	5	3	7	-6

b. Find h'(1) if $h(x) = x^2 e^{f(x)}$