1. Define a transformation $T: M_{2 \times 2} \rightarrow \mathbb{P}_{3}$ by $T\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=a x^{3}+(b+c) x+d$.
a. Find the kernel of T, a basis for $\operatorname{ker} T$, and $\operatorname{dim} \operatorname{ker} T$.

Hint: first decide, will the kernel be a collection of polynomials, or of matrices?
b. Find a basis for the image of T (the range), and its dimension. Hint: what polynomials can we possibly get by applying T : all of them, or only some of them?
2. $\mathcal{B}=\left\{2 t^{2}+t, t+1,3 t+2\right\}$ is a basis for \mathbb{P}_{2}. Let $p=4 t^{2}+5 t+6$. Find $[p]_{\mathcal{B}}$. Hint: begin by writing an equation with coefficients c_{1}, c_{2} and c_{3} for each basis polynomial, and set them equal to the polynomial p. Then combine like terms.

