1. Let $\mathscr{A}=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ and $\mathscr{D}=\left\{\mathbf{d}_{1}, \mathbf{d}_{2}, \mathbf{d}_{3}\right\}$ be bases of a vector space V. Suppose that $\mathbf{a}_{1}=4 \mathbf{d}_{1}-\mathbf{d}_{2}, \mathbf{a}_{2}=-\mathbf{d}_{1}+\mathbf{d}_{2}+\mathbf{d}_{3}$ and $\mathbf{a}_{3}=\mathbf{d}_{2}-2 \mathbf{d}_{3}$.
a. Find the change of coordinate matrix from of to \mathfrak{D}.
b. Find $[\mathbf{x}]_{\mathscr{D}}$ for $\mathbf{x}=3 \mathbf{a}_{1}+4 \mathbf{a}_{2}+\mathbf{a}_{3}$.
2. In \mathbb{P}_{2}, find the change of coordinate matrix from the basis $\mathfrak{B}=\left\{1-3 x^{2}, 2+x-5 x^{2}, 1+2 x\right\}$ to the standard basis $\left\{1, x, x^{2}\right\}$. Then write x^{2} as a linear combination of the polynomials in \mathfrak{B}.
