- 1. Let $\mathscr{A} = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ and $\mathfrak{D} = \{\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3\}$ be bases of a vector space V. Suppose that $\mathbf{a}_1 = 4\mathbf{d}_1 \mathbf{d}_2$, $\mathbf{a}_2 = -\mathbf{d}_1 + \mathbf{d}_2 + \mathbf{d}_3$ and $\mathbf{a}_3 = \mathbf{d}_2 2\mathbf{d}_3$.
 - a. Find the change of coordinate matrix from \mathscr{A} to \mathfrak{D} .

b. Find $[\mathbf{x}]_{\mathcal{D}}$ for $\mathbf{x} = 3\mathbf{a}_1 + 4\mathbf{a}_2 + \mathbf{a}_3$.

2. In \mathbb{P}_2 , find the change of coordinate matrix from the basis $\mathfrak{B} = \{1-3x^2, 2+x-5x^2, 1+2x\}$ to the standard basis $\{1, x, x^2\}$. Then write x^2 as a linear combination of the polynomials in \mathfrak{B} .