1. The matrix $A=\left[\begin{array}{rrr}4 & 2 & 3 \\ -1 & 1 & -3 \\ 2 & 4 & 9\end{array}\right]$ has characteristic polynomial $-(\lambda-3)^{2}(\lambda-8)$.
a. Find a basis for the eigenspace corresponding to the eigenvalue $\lambda=3$.
b. Is A diagonalizable? Explain briefly.
2. Given the system

$$
\begin{array}{r}
x_{1}+3 x_{2}=2 \\
3 x_{1}+h x_{2}=k
\end{array}
$$

for what values of h and k will the system have a unique solution?
3. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}-2 x_{3}, \quad-x_{1}+2 x_{2}+3 x_{3}\right)$.
a. What properties would we have to check to show that T a linear transformation? (If you finish the rest of the worksheet, come back and show them.)
b. Find $\operatorname{ker} T$, a basis for $\operatorname{ker} T$, and the dimension of $\operatorname{ker} T$.
c. Is T onto? (Justify.)
4. Let A be a 42×35 matrix, and let $T: \mathbb{R}^{35} \rightarrow \mathbb{R}^{42}$ be the transformation $T(\mathbf{x})=A \mathbf{x}$.
a. Suppose A has 30 pivot columns. Find $\operatorname{rank} A$ and $\operatorname{dim} \operatorname{Nul} A$.
b. If $\operatorname{Col} A$ is a subspace of \mathbb{R}^{j} and $\operatorname{Nul} A$ is a subspace of \mathbb{R}^{k}, find j and k.
5. In \mathbb{R}^{3}, let $W=\operatorname{span}\left\{\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right],\left[\begin{array}{r}-2 \\ 0 \\ 1\end{array}\right]\right\}$. Let $\mathbf{y}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Find the closest point to \mathbf{y} in W and the distance between \mathbf{y} and W. (No need to simplify the ugly fractions.) Don't forget the first step.
6. Let $\mathfrak{B}=\left\{\left[\begin{array}{c}7 \\ -2\end{array}\right],\left[\begin{array}{c}2 \\ -1\end{array}\right]\right\}$ and $\mathfrak{C}=\left\{\left[\begin{array}{l}4 \\ 1\end{array}\right],\left[\begin{array}{l}5 \\ 2\end{array}\right]\right\}$ be bases of \mathbb{R}^{2}. Find the change of basis matrix from \mathfrak{B} to \mathfrak{C} and the change of basis matrix from \mathfrak{C} to \mathfrak{B}. Hint: Once you find the first matrix, the second is the inverse.
7. Let $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{1}$ be defined using the derivative, so $T(f)=f^{\prime}$.
a. Find the matrix for T relative to the bases $\left\{t^{2}+2, t+3, t+1\right\}$ and $\{t, 1\}$.
b. Find the kernel of T. (nothing to do with the basis in part (a); this is a new question.)
c. Find the range of T.
8. Consider the matrix $A=\left[\begin{array}{rr}1 & 5 \\ -2 & 3\end{array}\right]$. Find the eigenvalues, and for one of them (your choice) find a corresponding eigenvector.
9. Decide whether or not each subset is a subspace. (You should be prepared to justify whether it satisfies each of the three properties, and give an example if it does not.)
a. Let H be the set of matrices in $M_{2 \times 2}$ satisfying $\operatorname{det}(A)=0$.
b. Let H be the set of polynomials in \mathbb{P}_{3} satisfying $p(5)=p(2)$.

