These problems will help you review for exam 2. This is not a comprehensive review; it is just meant to help you get started.

1. Let $\mathbf{v}=\left[\begin{array}{l}1 \\ 6 \\ 3 \\ 0\end{array}\right]$.
a. Let $\mathbf{y}=\left[\begin{array}{l}2 \\ 0 \\ 1 \\ 5\end{array}\right]$. Write $\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$ where $\hat{\mathbf{y}}$ is the orthogonal projection of \mathbf{y} onto \mathbf{v}.
b. Find all vectors in \mathbb{R}^{4} which are orthogonal to \mathbf{v}.
2. In each case, decide if the matrix M is diagonalizable, is not diagonalizable, or if there is not enough information to decide.
a. M is a 3×3 matrix with eigenvalues 0,4 , and 8 .
b. M is a 4×4 matrix with eigenvalues 1,4 and 8 .
c. M is a 5×5 matrix with three eigenvalues, two of which have 1-dimensional eigenspaces and one with a 2 -dimensional eigenspace.
3. The matrix $A=\left[\begin{array}{rrr}2 & -2 & 3 \\ 0 & 3 & -2 \\ 0 & -1 & 2\end{array}\right]$ has eigenvalues $\lambda_{1}=2, \lambda_{2}=1$ and $\lambda_{3}=4$. Diagonalize A. Hint: $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{r}7 \\ -4 \\ 2\end{array}\right]$ are both eigenvectors.
4. Let $A=\left[\begin{array}{rrrr}1 & 2 & 3 & -1 \\ 1 & 2 & 3 & -1 \\ -2 & -4 & -6 & 2\end{array}\right]$.
a. Find a basis for $\operatorname{Col} A$.
b. Find a basis for $\operatorname{Nul} A$.

Let $\mathbf{x}=\left[\begin{array}{r}-4 \\ 1 \\ 1 \\ 1\end{array}\right]$. Verify \mathbf{x} is in $\operatorname{Nul} A$, and then find the coordinate vector for \mathbf{x} in terms of your basis for $\operatorname{Nul} A$.
c. Is your basis for $\operatorname{Nul} A$ orthogonal? Is it orthonormal? Explain briefly.
5. Let $W=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ where $\mathbf{x}_{1}=\left[\begin{array}{r}1 \\ 2 \\ -1 \\ 0\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}2 \\ 2 \\ 0 \\ 1\end{array}\right]$ and $\mathbf{x}_{3}=\left[\begin{array}{r}1 \\ 1 \\ -1 \\ 0\end{array}\right]$. Use the GrammSchmidt process to produce a new basis for W. What property does this new basis have that the original does not?

