These problems will help you review for exam 2. This is not a comprehensive review; it is just meant to help you get started.

1. Let
$$\mathbf{v} = \begin{bmatrix} 1 \\ 6 \\ 3 \\ 0 \end{bmatrix}$$
.
a. Let $\mathbf{y} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 5 \end{bmatrix}$. Write $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$ where $\hat{\mathbf{y}}$ is the orthogonal projection of \mathbf{y} onto \mathbf{v} .

b. Find all vectors in \mathbb{R}^4 which are orthogonal to **v**.

- 2. In each case, decide if the matrix M is diagonalizable, is not diagonalizable, or if there is not enough information to decide.
 - a. *M* is a 3×3 matrix with eigenvalues 0, 4, and 8.
 - b. *M* is a 4×4 matrix with eigenvalues 1, 4 and 8.
 - c. M is a 5×5 matrix with three eigenvalues, two of which have 1-dimensional eigenspaces and one with a 2-dimensional eigenspace.

3. The matrix
$$A = \begin{bmatrix} 2 & -2 & 3 \\ 0 & 3 & -2 \\ 0 & -1 & 2 \end{bmatrix}$$
 has eigenvalues $\lambda_1 = 2$, $\lambda_2 = 1$ and $\lambda_3 = 4$. Diagonalize A .
Hint: $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 7 \\ -4 \\ 2 \end{bmatrix}$ are both eigenvectors.

4. Let
$$A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ 1 & 2 & 3 & -1 \\ -2 & -4 & -6 & 2 \end{bmatrix}$$
.

- a. Find a basis for $\operatorname{Col} A$.
- b. Find a basis for Nul A.

Let $\mathbf{x} = \begin{bmatrix} -4 \\ 1 \\ 1 \\ 1 \end{bmatrix}$. Verify \mathbf{x} is in Nul *A*, and then find the coordinate vector for \mathbf{x} in terms

of your basis for Nul A.

c. Is your basis for Nul *A* orthogonal? Is it orthonormal? Explain briefly.

5. Let
$$W = \operatorname{Span} \{ \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \}$$
 where $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{x}_2 = \begin{bmatrix} 2 \\ 2 \\ 0 \\ 1 \end{bmatrix}$ and $\mathbf{x}_3 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$. Use the Gramm-

Schmidt process to produce a new basis for W. What property does this new basis have that the original does not?