These problems should help you review for our first exam. They are not meant to be comprehensive. You should refer to your class notes, other worksheets, online homework and written homework to help prepare for the exam.

1. Suppose a system of equations has the augmented matrix $\left[\begin{array}{cc|c}h & 1 & 3 \\ 1 & 2 & k\end{array}\right]$.

Find all values of h and k for which the system has
(a) infinitely many solutions, (b) no solutions, or (c) a unique solution. Explain briefly.
2. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(2 x_{1},-x_{3}+x_{4}, x_{2}+x_{3}-2 x_{4}\right)$. Find the standard matrix A associated to T.
3. Find the standard matrix A for the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that first reflects points through the line $y=x$ and then reflects through the vertical y-axis.
4. If A is a 5×5 matrix and the equation $A \mathbf{x}=\mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^{5}, is it possible that for some \mathbf{b}, the equation $A \mathbf{x}=\mathbf{b}$ has more than one solution? Why or why not?
5. Suppose we have a transformation $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ given by $T(\mathbf{x})=A \mathbf{x}$, where

$$
\begin{aligned}
& A=\left[\begin{array}{rrrrr}
1 & -2 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] . \text { For each of these answer Yes or No; then explain briefly. } \\
& \text { a. Is the vector }\left[\begin{array}{l}
1 \\
2 \\
0 \\
1 \\
3
\end{array}\right] \text { in the image of } T ? \\
& \text { b. Is the vector }\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \text { in the image of } T ?
\end{aligned}
$$

c. Is T one-to-one? (explain briefly)
d. Is T onto? (explain briefly)
6. Can a square matrix with two identical columns be invertible? Why or why not?
7. Can a square matrix with two identical rows be invertible? Why or why not?

