Math 322 February 21, 2017 Names:_____

The matrix

[3	-6	9	0	3]		1	-2	3	0	0
	2	-4	7	2	0	is row-equivalent to the matrix	0	0	1	2	0.
	3	-6	6	-6	0		0	0	0	0	1

- 1. Write a basis for $\operatorname{Col} A$.
- 2. What is the rank of *A*?

3. Are
$$\mathbf{p}_1 = \begin{bmatrix} 8\\1\\-2\\1\\0 \end{bmatrix}$$
, $\mathbf{p}_2 = \begin{bmatrix} 0\\1\\3\\1\\1 \end{bmatrix}$ and $\mathbf{p}_3 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$ in Nul A? (Justify.)

4. Find a basis for Nul *A*.

5. Find the dimension of Nul *A*.

6. Suppose *A* is an 8×20 matrix with seven pivot columns. Find the dimensions of Col *A* and Nul *A*.

7. Let
$$H = \begin{cases} \begin{bmatrix} p+r \\ 2p \\ 2r \\ 6p+2r \end{bmatrix} | p,r \text{ are real numbers} \end{cases}$$
. Show that H is a subspace of \mathbb{R}^4 .

Hint: Write H as a span of vectors.

8. Let
$$H = \begin{cases} \begin{bmatrix} p+r \\ p+2 \\ r+1 \\ 6p+2r \end{bmatrix} | p, r \text{ are real numbers} \end{cases}$$
. Show that H is not a subspace of \mathbb{R}^4 by

clearly showing which property or properties it violates.