\qquad
February 21, 2017
The matrix
$A=\left[\begin{array}{rrrrr}3 & -6 & 9 & 0 & 3 \\ 2 & -4 & 7 & 2 & 0 \\ 3 & -6 & 6 & -6 & 0\end{array}\right]$ is row-equivalent to the matrix $\left[\begin{array}{rrrrr}1 & -2 & 3 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$.

1. Write a basis for $\operatorname{Col} A$.
2. What is the rank of A ?
3. Are $\mathbf{p}_{1}=\left[\begin{array}{r}8 \\ 1 \\ -2 \\ 1 \\ 0\end{array}\right], \mathbf{p}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 3 \\ 1 \\ 1\end{array}\right]$ and $\mathbf{p}_{3}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ in $\operatorname{Nul} A$? (Justify.)
4. Find a basis for $\operatorname{Nul} A$.
5. Find the dimension of $\operatorname{Nul} A$.
6. Suppose A is an 8×20 matrix with seven pivot columns. Find the dimensions of $\operatorname{Col} A$ and $\operatorname{Nul} A$.
7. Let $H=\left\{\left.\left[\begin{array}{c}p+r \\ 2 p \\ 2 r \\ 6 p+2 r\end{array}\right] \right\rvert\, p, r\right.$ are real numbers $\}$. Show that H is a subspace of \mathbb{R}^{4}. Hint: Write H as a span of vectors.
8. Let $H=\left\{\left.\left[\begin{array}{c}p+r \\ p+2 \\ r+1 \\ 6 p+2 r\end{array}\right] \right\rvert\, p, r\right.$ are real numbers $\}$. Show that H is not a subspace of \mathbb{R}^{4} by clearly showing which property or properties it violates.
