1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by $T\left(x_{1}, x_{2}\right)=\left(-5 x_{1}+9 x_{2}, 4 x_{1}-7 x_{2}\right)$. Show that T is invertible, and find a formula for T^{-1}. Hint: first find the standard matrix for T.
2. Let $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 0 & 1 & 4 \\ 0 & 2 & 7\end{array}\right]$.
a. Find A^{-1}, the inverse of A.
b. Find A^{T} and $\left(A^{T}\right)^{-1}$.
3. Solve the equation for X :

$$
\left[\begin{array}{cc}
4 & 3 \\
-7 & -9
\end{array}\right] X+\left[\begin{array}{cc}
-1 & 9 \\
9 & -3
\end{array}\right]=\left[\begin{array}{cc}
-3 & -9 \\
-8 & -7
\end{array}\right]
$$

