The Invertible Matrix Theorem

Let *A* be a square $n \times n$ matrix. The following statements are equivalent. That is, for a given *A*, the statements are either all true or all false.

- a. *A* is an invertible matrix.
- b. *A* is row equivalent to the $n \times n$ identity matrix.
- c. *A* has *n* pivot positions.
- d. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- e. The columns of *A* form a linearly independent set.
- f. The linear transformation $\mathbf{x} \rightarrow A\mathbf{x}$ is one-to-one.
- g. The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- h. The columns of A span \mathbb{R}^n .
- i. The linear transformation $\mathbf{x} \to A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- j. There is an $n \times n$ matrix *C* such that CA = I.
- k. There is an $n \times n$ matrix *D* such that AD = I.
- 1. A^T is an invertible matrix.
- m. The columns of *A* form a basis of \mathbb{R}^n .
- n. $\operatorname{Col} A = \mathbb{R}^n$
- o. dimColA = n
- p. rank A = n
- q. Nul $A = \{\mathbf{0}\}$
- r. dim Nul A = 0
- s.
- t.