Names:

Let
$$T(\mathbf{x}) = A\mathbf{x}$$
 be a linear transformation with $A = \begin{bmatrix} 1 & -3 & 2 \\ 3 & -8 & 8 \\ 0 & 1 & 2 \\ 1 & 0 & 8 \end{bmatrix}$.

1. If $T: \mathbb{R}^n \to \mathbb{R}^m$, find n and m.

2. Let
$$\mathbf{b} = \begin{bmatrix} 1 \\ 6 \\ 3 \\ 10 \end{bmatrix}$$
. Find all possible \mathbf{x} with $T(\mathbf{x}) = \mathbf{b}$.

Hint: write the augmented matrix with the columns of A and \mathbf{b} , and row-reduce.

- 3. Do the columns of *A* span all of ℝ⁴? (i.e., can we find **x** with *T*(**x**) = **b** for all choices of **b** in ℝ⁴? Explain. *Hint*: the row-reduction you did in question 2 will be helpful.
- 4. Are the columns of *A* linearly independent? If not, find a dependence relation. *Hint*: the row-reduction you did in question 2 will be helpful.