\qquad

Let $T(\mathbf{x})=A \mathbf{x}$ be a linear transformation with $A=\left[\begin{array}{rrr}1 & -3 & 2 \\ 3 & -8 & 8 \\ 0 & 1 & 2 \\ 1 & 0 & 8\end{array}\right]$.

1. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, find n and m.
2. Let $\mathbf{b}=\left[\begin{array}{c}1 \\ 6 \\ 3 \\ 10\end{array}\right]$. Find all possible \mathbf{x} with $T(\mathbf{x})=\mathbf{b}$.

Hint: write the augmented matrix with the columns of A and \mathbf{b}, and row-reduce.
3. Do the columns of A span all of \mathbb{R}^{4} ? (i.e., can we find \mathbf{x} with $T(\mathbf{x})=\mathbf{b}$ for all choices of \mathbf{b} in \mathbb{R}^{4} ? Explain. Hint: the row-reduction you did in question 2 will be helpful.
4. Are the columns of A linearly independent? If not, find a dependence relation. Hint: the row-reduction you did in question 2 will be helpful.

