1. Find the \mathscr{B} - coordinate vector of $\mathbf{x}_{1}=\left[\begin{array}{l}5 \\ 4\end{array}\right]$ relative to the basis $\mathscr{B}=\left\{\left[\begin{array}{c}-3 \\ 4\end{array}\right],\left[\begin{array}{c}-5 \\ 6\end{array}\right]\right\}$.
2. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation represented by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{3}, x_{2}, 0\right)$.
a. Find the standard matrix A which is associated to T.
b. Is A diagonalizable? If so, find P and D so that $A=P D P^{-1}$:
i. Find the eigenvalues associated to A.
ii. Find the associated eigenvectors for those eigenvalues.
iii. Find P and D (or explain why it is not possible).
