1. Find the
$$\mathscr{B}$$
 – coordinate vector of $\mathbf{x}_1 = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$ relative to the basis $\mathscr{B} = \left\{ \begin{bmatrix} -3 \\ 4 \end{bmatrix}, \begin{bmatrix} -5 \\ 6 \end{bmatrix} \right\}$.

Let T: R³ → R³ be the linear transformation represented by T(x₁, x₂, x₃) = (2x₃, x₂, 0).
a. Find the standard matrix A which is associated to T.

- b. Is *A* diagonalizable? If so, find *P* and *D* so that $A = PDP^{-1}$:
 - i. Find the eigenvalues associated to *A*.
 - ii. Find the associated eigenvectors for those eigenvalues.
 - iii. Find *P* and *D* (or explain why it is not possible).