1. What criteria must we show to prove that $H \subset \mathbb{R}^n$ is a **subspace**?

2. What does it mean for a set of vectors $\{\mathbf{u}_1,...,\mathbf{u}_p\}$ to be **linearly independent**? (state the definition, not a method to compute.)

- 3. Consider the vectors $\mathbf{u}_1 = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$ and $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$. Compute the following:
 - a. $\mathbf{u}_1 \cdot \mathbf{u}_2$
 - b. $\mathbf{u}_2 \cdot \mathbf{u}_3$
 - c. $\mathbf{u}_1 \cdot \mathbf{u}_3$
 - d. $\mathbf{u}_1 \cdot \mathbf{u}_1$
 - e. $\mathbf{u}_2 \cdot \mathbf{u}_2$
 - f. $\|\mathbf{u}_3\|$

There once was a vector named u who just didn't know what to do:

By its name you'd assume it had length of one unit but its magnitude equaled to two.

I'm-not a unit vector? My whale life is a lie!