1. What criteria must we show to prove that $H \subset \mathbb{R}^{n}$ is a subspace?
2. What does it mean for a set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ to be linearly independent? (state the definition, not a method to compute.)
3. Consider the vectors $\mathbf{u}_{1}=\left[\begin{array}{r}3 \\ -3 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{r}2 \\ 2 \\ -1\end{array}\right]$ and $\mathbf{u}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$. Compute the following:
a. $\mathbf{u}_{1} \cdot \mathbf{u}_{2}$
b. $\mathbf{u}_{2} \cdot \mathbf{u}_{3}$
c. $\mathbf{u}_{1} \cdot \mathbf{u}_{3}$
d. $\mathbf{u}_{1} \cdot \mathbf{u}_{1}$

$$
\begin{aligned}
& \text { There once was a rector named } u \\
& \text { who just didnt know what to do: } \\
& \text { By its name youd assume it } \\
& \text { had length of one unit } \\
& \text { but its magnitude equaled to two. }
\end{aligned}
$$

e. $\mathbf{u}_{2} \cdot \mathbf{u}_{2}$
f. $\left\|\mathbf{u}_{3}\right\|$

