Let $W=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ where $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{r}-1 \\ 3 \\ 1 \\ -2\end{array}\right]$ and $\mathbf{u}_{3}=\left[\begin{array}{r}-1 \\ 0 \\ 1 \\ 1\end{array}\right]$.
a. Check that this spanning set is an orthogonal basis for W.
b. Let $\mathbf{w}=\left[\begin{array}{r}8 \\ -6 \\ -2 \\ 16\end{array}\right]$. Compute $[\mathbf{w}]_{\mathscr{B}}$ (using the formula that works only for an orthogonal basis).
c. An orthonormal basis is a basis that is orthogonal, in which every vector has length 1 . Find an orthonormal basis for W. (Replace each \mathbf{u}_{i} with a unit vector pointing in the same direction.)

We will still let $W=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ where $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{r}-1 \\ 3 \\ 1 \\ -2\end{array}\right]$ and $\mathbf{u}_{3}=\left[\begin{array}{r}-1 \\ 0 \\ 1 \\ 1\end{array}\right]$.
d. Let $\mathbf{y}=\left[\begin{array}{r}4 \\ 3 \\ 3 \\ -1\end{array}\right]$. Compute $\operatorname{proj}_{\mathbf{u}_{1}} \mathbf{y}, \operatorname{proj}_{\mathbf{u}_{\mathbf{2}}} \mathbf{y}$ and $\operatorname{proj}_{\mathbf{u}_{3}} \mathbf{y}$.
e. Find the point in W that is closest to \mathbf{y}, and find the distance between W and \mathbf{y}.

