Please write up complete, clear solutions. We will be looking for your reasoning and explanations, not just a correct answer. Please copy each question and write neatly.

This assignment comes from material in sections 1.1, 1.2 and 1.3. The textbook will be a helpful reference for these. You can also get help via email (ewhitaker@uky.edu), via office hours (stop by or make an appointment) or possibly in the Mathskeller (depending on who is tutoring at the time).

1. Suppose we know the system

$$
\begin{aligned}
& 3 x_{1}+5 x_{2}=h \\
& c x_{1}+d x_{2}=k
\end{aligned}
$$

is consistent for all possible values of h and k. What can you say about c and d ?
2. Find three different augmented matrices which represent linear systems with solutions $x_{1}=6, x_{2}=2$ and $x_{3}=4$.
3. In the following matrices, \quad represents a nonzero entry, and * represents an entry that may or may not be zero. For each of these augmented matrices determine if the associated linear system is inconsistent, consistent with a unique solution, or consistent with infinitely many solutions. (Hint: it may help to start by drawing the vertical bar separating coefficients from constants.)
a. $\left[\begin{array}{lll}\boldsymbol{\square} & * & * \\ 0 & \boldsymbol{\square} & *\end{array}\right]$
b. $\left[\begin{array}{ll}\boldsymbol{\square} & * \\ 0 & ■\end{array}\right]$
c. $\left[\begin{array}{ll}\square & 0 \\ 0 & 0\end{array}\right]$
d. $\left[\begin{array}{llll}0 & \square & * & * \\ 0 & 0 & \boldsymbol{\square} & *\end{array}\right]$
e. $\left[\begin{array}{rrrr}\boldsymbol{\square} & * & * & * \\ 0 & 0 & \boldsymbol{\square} & * \\ 0 & 0 & 0 & \boldsymbol{\square}\end{array}\right]$
4. A system with fewer equations than unknowns is called an underdetermined system. A system with more equations than unknowns is called an overdetermined system.
a. Give an example of an inconsistent underdetermined linear system.
b. Give an example of a consistent overdetermined linear system.
5. True or False. Decide if each statement is true (always true) or false (can ever be false). If true explain clearly. If false, explain or give a counterexample where appropriate.
a. Points in the plane corresponding to the vectors $\left[\begin{array}{l}3 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}-2 \\ -3\end{array}\right]$ line on a line through the origin.
b. An example of a linear combination of the vectors \mathbf{u} and \mathbf{v} is $\frac{2}{3} \mathbf{v}$.
c. The set $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is always visualized as a plane through the origin.

