Written Homework 3

Please write up complete, clear solutions on your own paper. We will be looking for your reasoning and explanations, not just a correct answer. Please copy each question and write neatly.

This assignment covers material in sections 1.8, and 1.9. The textbook is a helpful reference for these. You can also get help via email (<u>ewhitaker@uky.edu</u>), via office hours (stop by or make an appointment) or possibly in the Mathskeller (depending on who is tutoring at the time).

1. For each transformation *T* find the standard matrix *A*, and find *m* and *n* so that $T: \mathbb{R}^n \to \mathbb{R}^m$.

a.
$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x+y \\ x \\ -y \end{bmatrix}$$

b.
$$T(x_1, x_2, x_3, x_4) = (x_1 + 5x_2, x_1 + 2x_3, x_2 - x_3)$$

- 2. An affine transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ has the form $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ with A an $m \times n$ matrix, and \mathbf{b} in \mathbb{R}^m . Show T is not a linear transformation if $\mathbf{b} \neq 0$.
- 3. Suppose *T* is a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$. Can you give a relationship between *m* and *n*
 - a. if *T* is onto,?
 - b. if *T* is one-to-one?
- 4. Let *T* is a linear transformation from $\mathbb{R}^2 \to \mathbb{R}^2$ which first reflects points through the horizontal *x* axis and then reflects points through the line *y* = *x*. Find the standard matrix associated to this linear transformation.