Please write up complete, clear solutions on your own paper. We will be looking for your reasoning and explanations, not just a correct answer. Please copy each question and write neatly.

This assignment covers material in sections 1.8, and 1.9. The textbook is a helpful reference for these. You can also get help via email (ewhitaker@uky.edu), via office hours (stop by or make an appointment) or possibly in the Mathskeller (depending on who is tutoring at the time).

1. For each transformation T find the standard matrix A, and find m and n so that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
a. $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x+y \\ x \\ -y\end{array}\right]$
b. $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+5 x_{2}, x_{1}+2 x_{3}, x_{2}-x_{3}\right)$
2. An affine transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has the form $T(\mathbf{x})=A \mathbf{x}+\mathbf{b}$ with A an $m \times n$ matrix, and \mathbf{b} in \mathbb{R}^{m}. Show T is not a linear transformation if $\mathbf{b} \neq 0$.
3. Suppose T is a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Can you give a relationship between m and n
a. if T is onto,?
b. if T is one-to-one?
4. Let T is a linear transformation from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which first reflects points through the horizontal x axis and then reflects points through the line $y=x$. Find the standard matrix associated to this linear transformation.
