Please write up complete, clear solutions on your own paper. We will be looking for your reasoning and explanations, not just a correct answer. Please copy each question and write neatly. For the construction, you should justify that your construction meets the required criteria.

This assignment covers material in sections $5.3,5.4$, and 5.5 .

1. Suppose A is a 5×5 matrix with exactly three eigenvalues, and we know one of the eigenspaces is three-dimensional (we aren't told about the others). Can we determine whether or not A is diagonalizable? Explain why or why not.
2. Now suppose A is a 6×6 matrix with exactly three eigenvalues, and one of the eigenspaces is three-dimensional (we aren't told about the others). Can we determine whether or not A is diagonalizable? Explain why or why not.
3. Construct an example of a matrix that is diagonalizable, is not diagonal, and is not invertible.
4. Let $A=\left[\begin{array}{rr}1 & 1 \\ -1 & 3\end{array}\right]$, and $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ where $\mathbf{b}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{l}5 \\ 4\end{array}\right]$. Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{x})=A \mathbf{x}$. Find $[T]_{\mathscr{B}}$.
5. Let $A=\left[\begin{array}{rr}\sqrt{3} & 3 \\ -3 & \sqrt{3}\end{array}\right]$. The transformation $\mathbf{x} \mapsto A \mathbf{x}$ is a composition of a rotation and a scaling.
a. Give the angle of rotation and the scale factor.
b. Find the eigenvalues and a basis for each eigenspace.
