Please write up complete, clear solutions on your own paper. We will be looking for your reasoning and explanations, not just a correct answer. Please copy each question and write neatly. This assignment covers material in Chapter 4. The textbook is a helpful reference for these. You can also get help via email (ewhitaker@uky.edu), via office hours (stop by or make an appointment) or possibly in the Mathskeller (depending on who is tutoring at the time).

1. Let $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ be a transformation defined by $T(A)=A+A^{T}$.
a. Show that T is a linear transformation. Hint: begin by writing $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
b. Find the kernel of T, a basis for the kernel of T, and the dimension of the kernel of T.
c. Show that the image of T is the set of all matrices B in $M_{2 \times 2}$ with the property $B^{T}=B$.
2. Let $\mathcal{B}=\{x+2,3 x+8\}$
a. Show that \mathscr{B} is a basis for \mathbb{P}_{1}, the space of polynomials of degree at most 1 .
b. Given $[p]_{\mathscr{B}}=\left[\begin{array}{l}5 \\ 2\end{array}\right]$, find p.
c. For $p=7 x+10$, find the coordinate vector for p relative to the basis \mathcal{B} (i.e., find $[p]_{\mathcal{B}}$).
