1. Given the differential equation y'' - xy' - y = 0, assume the solution can be written in the form of the series about $x_0 = 1$, and find the recurrence relation for the coefficients. Then find the first three non-zero terms of two independent solutions (y_1 and y_2).

- 2. Determine a lower bound for the radius of convergence of a series solution about each x_0 for the differential equation $(x^2 2x 3)y'' + xy' + 4y = 0$.
 - a. $x_0 = 4$ b. $x_0 = -4$

- 3. Determine a lower bound for the radius of convergence of a series solution about each x_0 for the differential equation $(1+x^2)y'' + 2xy' + 4x^2y = 0$.
 - a. $x_0 = 0$ b. $x_0 = -\frac{1}{2}$