Math 533 Exam

December 162015
Do at least three of the following five questions. If you complete more than three questions, indicate clearly which three you would like to be graded.
(1) Let $\Omega \subset \mathbb{R}^{n}$ be open. Suppose $u \in C(\Omega)$ has the property that

$$
u(x)=f_{\partial B(x, r)} u d S
$$

for any $B(x, r) \subset \Omega$. Show that u is smooth. You may need to use the fact that for any $\varepsilon>0$, there exists a smooth function η_{ε} which is radial and supported in the ball of radius ε.
(2) Let Φ be the fundamental solution for the Laplacian on \mathbb{R}^{3} :

$$
\Phi(x)=\frac{1}{4 \pi|x|} \text { for } x \neq 0
$$

Suppose u is harmonic on a smooth bounded domain $U \subset \mathbb{R}^{3}$. Show that for $x \in U$,

$$
u(x)=\int_{\partial U}\left[\Phi(y-x) \partial_{\nu} u(y)-u(y) \partial_{\nu} \Phi(y-x)\right] d S_{y}
$$

(3) Let $U \subset \mathbb{R}^{n}$ be a smooth bounded domain. Show that the equation

$$
\begin{aligned}
u_{t t}-\Delta u & =f \text { in } U_{T} \\
u & =g \text { on } \Gamma_{T} \\
u_{t} & =h \text { on } U \times\{t=0\}
\end{aligned}
$$

has at most one solution $u \in C^{2}\left(\overline{U_{T}}\right)$.
(4) Suppose u is harmonic and nonnegative on $B(0,2)$. Show that there exists $C>0$ depending on the dimension such that for any $x, y \in B(0,1)$,

$$
\frac{1}{C} u(y) \geq u(x) \geq C u(y)
$$

(5) Suppose $f \in C^{\infty}(\mathbb{R})$. Show that the equation

$$
\begin{aligned}
u_{t}+u u_{x} & =0 \text { for } t>0 \\
u(x, 0) & =f(x)
\end{aligned}
$$

has a solution which is continuous on $\{t \geq 0\}$ if f is nondecreasing. By means of a counterexample, show that this is not necessarily true if f is decreasing.

