Math 533 Midterm

October 23, 2015.

Do at least three of the following five questions. If you complete more than three questions, your grade will be based on the best three.
(1) Define $u \in C^{2}(\Omega)$ to be subharmonic in Ω if

$$
\triangle u \geq 0 \text { in } \Omega .
$$

Show that $u \in C^{2}(\Omega)$ is subharmonic in Ω if and only if

$$
u(x) \leq f_{\partial B(x, r)} u d S
$$

for every $B(x, r) \subset \Omega$.
(2) Suppose $u \in C^{2}(\bar{\Omega})$ solves

$$
\begin{aligned}
\Delta u & =u \text { in } \Omega \\
u & =0 \text { on } \partial \Omega .
\end{aligned}
$$

Show that $u \equiv 0$ in Ω.
(3) Let $\Phi(x, t)$ be the fundamental solution to the heat equation:

$$
\Phi(x, t)= \begin{cases}(4 \pi t)^{-n / 2} e^{-\frac{|x|^{2}}{4 t}} & \text { if } t>0 \\ 0 & \text { otherwise }\end{cases}
$$

Suppose $f \in C^{\infty}\left(\mathbb{R}^{n} \times(0, \infty)\right)$ has compact support, and let

$$
u(x, t)=\int_{0}^{t} \int_{\mathbb{R}^{n}} \Phi(y, s) f(x-y, t-s) d y d s
$$

Assuming that u is smooth, show that

$$
u_{t}-\triangle u=f
$$

on $\mathbb{R}^{n} \times(0, \infty)$. You may need the fact that

$$
\int_{\mathbb{R}^{n}} \Phi(x, t) d x=1
$$

for $t>0$, and the fact that

$$
\lim _{s \rightarrow 0^{+}} \int_{\mathbb{R}^{n}} \Phi(y, s) f(x-y, t-s) d y=f(x, t)
$$

for $t>0$.
(4) Let $g \in C\left(\mathbb{R}^{n}\right)$ be compactly supported, and $T>0$. Show that the equation

$$
\begin{aligned}
u_{t}-\Delta u & =0 \text { in } \mathbb{R}^{n} \times(0, T) \\
u & =g \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{aligned}
$$

has at most one solution $u \in C^{2}\left(\mathbb{R}^{n} \times[0, T]\right)$ that satisfies the condition

$$
\lim _{|x| \rightarrow \infty} u(x, t)=0
$$

for each $t \in(0, T)$.
(5) Suppose $u \in C^{2}(\mathbb{R} \times \mathbb{R})$ satisfies the equation

$$
u_{t t}-3 u_{t x}+2 u_{x x}=0
$$

on $\mathbb{R} \times \mathbb{R}$. Show that if $u(x, 0)=u_{t}(x, 0)=0$ for all $x>0$, then $u(x, t)=0$ for all $x, t>0$. (Hint: this is the wave equation question.)

