Problem Set 1

(1) Read Chapter 1 and section 2.1 of Evans. Also read section 2.2 up until the end of the proof of Theorem 4 (page 27).
(2) Do problem 1 and 2 from section 2.5 of Evans.
(3) Solve the equation $u_{t}+x u_{x}=0$, with the initial condition $u(x, 0)=g(x)$, where g is C^{1}.
(4) ("Weak solutions")
i) Suppose $u \in C^{1}\left(\mathbb{R}^{2}\right)$ solves the transport equation

$$
u_{t}+b u_{x}=0
$$

with initial condition $u(x, 0)=g(x)$. Show that if $v \in C^{1}\left(\mathbb{R}^{2}\right)$ satisfies $v(x, 0)=g(x)$ and

$$
\int_{\mathbb{R}^{2}} v\left(\varphi_{t}+b \varphi_{x}\right)=0
$$

for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$, then $v=u$.
ii) Inspired by part i), let's define u to be a "weak solution" of $u_{t}+b u_{x}=0$ if

$$
\int_{\mathbb{R}^{2}} u\left(\varphi_{t}+b \varphi_{x}\right)=0
$$

for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$. (I've put "weak solution" in quotes because this isn't quite the definition we'll use later.) Show that $u(x, t)=|x-b t|$ is a "weak solution" to $u_{t}+b u_{x}=0$, even though it isn't differentiable.
iii) (Optional) Is $u(x, t)=|x-b t|$ the only continuous "weak solution" to $u_{t}+$ $b u_{x}=0$ with $u(x, 0)=|x|$? Note that this is hard (I think it is hard, anyway) and this is one of the reasons we should worry about better definitions.

