Problem Set 10

(1) Reading: Read the beginning of section 4.1, up to the end of example 2 in 4.1.1 (page 171).
(2) Let $m, n \in \mathbb{Z}$. Define the Kronecker delta, $\delta_{m n}$, to be 1 when $m=n$ and zero otherwise. Prove that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i m x} e^{-i n x} d x=\delta_{m n}
$$

You can interpret this from a linear algebra point of view: if we define the inner product of two functions f, g on the interval $[-\pi, \pi]$ by the integral

$$
(f, g)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \bar{g}(x) d x
$$

then what we have just shown is that the set of all $e^{i n x}, n \in \mathbb{Z}$, forms an orthonormal set.
(3) Using the identity $e^{i x}=\cos x+i \sin x$, conclude that

$$
\frac{2}{\pi} \int_{0}^{\pi} \sin (m x) \sin (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} \cos (m x) \cos (n x) d x=\delta_{m n}
$$

for all $m, n \neq 0 \in \mathbb{Z}$.
(4) Suppose that $f(x)=\sum_{n=-N}^{N} a_{n} e^{i n x}$, where $a_{n} \in \mathbb{C}$. Show that

$$
\|f\|_{L^{2}([-\pi, \pi])}^{2}=2 \pi \sum_{n=-N}^{N}\left|a_{n}\right|^{2}
$$

and moreover, that

$$
a_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

(5) Now suppose $f \in L^{1}([-\pi, \pi])$. Define

$$
a_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

and show that

$$
\lim _{n \rightarrow \pm \infty} a_{1}=0
$$

(Hint: first do this for $f \in C^{1}$, and then use the fact that for every L^{1} function f and every $\varepsilon>0$, there is a C^{1} function g such that $\|f-g\|_{L^{1}}<\varepsilon$. This result is sometimes called the Riemann-Lebesgue lemma.)
(6) Suppose $f \in C^{1}([-\pi, \pi])$, and define a_{n} as in the previous question. Define

$$
S_{N}(x)=\sum_{n=-N}^{N} a_{n} e^{i n x}
$$

Show that for each $x \in(-\pi, \pi)$,

$$
S_{N}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{N}(x-y) f(y) d y
$$

where

$$
K_{N}(\theta)=\frac{\sin \left(\left(N+\frac{1}{2}\right) \theta\right)}{\sin \left(\frac{1}{2} \theta\right)}
$$

Hint: Use Fubini, and sum a geometric series.
(7) Show that K_{N} is continuous, and

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{N}(\theta) d \theta=1
$$

(Hint: use the series form of K_{N}.) Now show that for $f \in C^{1}([-\pi, \pi])$,

$$
\begin{aligned}
S_{N}(x)-f(x) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{N}(\theta)[\tilde{f}(x+\theta)-\tilde{f}(x)] d \theta \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sin ((N+1 / 2)(\theta))\left[\frac{\tilde{f}(x+\theta)-\tilde{f}(x)}{\sin \left(\frac{1}{2} \theta\right)}\right] d \theta
\end{aligned}
$$

for each $x \in(-\pi, \pi)$. Here \tilde{f} is the periodic extension of f to the whole real line.
(8) Show that for $f \in C^{1}([-\pi, \pi])$, and each $x \in(-\pi, \pi)$

$$
\lim _{N \rightarrow \infty}\left(S_{N}(x)-f(x)\right)=0
$$

Moreover, show that if the periodic extension of f is C^{1}, then

$$
\lim _{N \rightarrow \infty}\left(S_{N}(x)-f(x)\right)=0
$$

for all $x \in[-\pi, \pi]$. Hint: think about your reasoning for question 5 .
(9) Now show that for $f \in L^{2}([-\pi, \pi])$,

$$
\lim _{N \rightarrow \infty}\left\|S_{N}-f\right\|_{L^{2}([\pi,-\pi])}=0
$$

You will need to use the fact that for every $\varepsilon>0$ and every $f \in L^{2}([-\pi, \pi])$, there exists a periodic $g \in C^{1}(\mathbb{R})$ such that $\|f-g\|_{L^{2}([-\pi, \pi])}<\varepsilon$.

We can summarize what we have just shown by saying that any f in $L^{2}([-\pi, \pi])$ can be written as a sum of the form

$$
f(x)=\sum_{n=-\infty}^{\infty} a_{n} e^{i n x}
$$

in the L^{2} sense. The linear algebra interpretation is that the set $\left\{e^{i n x}\right\}_{n \in \mathbb{Z}}$ can be viewed as a basis for $L^{2}([-\pi, \pi])$. (!) Because of your work in question 3 , you should be convinced that something similar is true for the set of all $\cos (m x)$ and the set of all $\sin (n x)$ on the interval $[0, \pi]$.

