Problem Set 11

- (1) Reading: Read section 4.3 up to the end of Example 4 (p187-194).
- (2) Suppose $f \in L^1(\mathbb{R}^n)$, and $\alpha \in \mathbb{R}$. Show that

if $g(x) = f(x - \alpha)$ then $\hat{g}(\xi) = \hat{f}(\xi)e^{-i\alpha\cdot\xi}$

and

if
$$g(x) = f(x)e^{i\alpha \cdot x}$$
 then $\hat{g}(\xi) = \hat{f}(\xi - \alpha)$.

- (3) Suppose $f, g \in L^1(\mathbb{R}^n)$. Show that $\widehat{f * g}(\xi) = (2\pi)^{n/2} \hat{g}(\xi) \hat{f}(\xi).$
- (4) Suppose $f \in L^1(\mathbb{R}^n)$ and $\lambda > 0$. Show that

if
$$g(x) = \overline{f(-x)}$$
 then $\hat{g}(\xi) = \overline{\hat{f}(\xi)}$

and

if
$$g(x) = f(x/\lambda)$$
 then $\hat{g}(\xi) = \lambda^n \hat{f}(\lambda x)$.

- (5) Suppose $f \in L^1(\mathbb{R}^n)$. Show that \hat{f} is continuous. (Use question 2 together with the dominated convergence theorem).
- (6) Suppose $f \in C^1(\mathbb{R})$ is compactly supported. Show that

$$\lim_{\xi \to \pm \infty} \hat{f}(\xi) = 0.$$

(7) Suppose $f \in L^1(\mathbb{R})$. Show that

$$\lim_{\xi \to \pm \infty} \hat{f}(\xi) = 0.$$

This is sometimes called the Riemann-Lebesgue lemma. Hint: use the previous question, together with the fact that for every $f \in L^1(\mathbb{R})$ and every $\varepsilon > 0$, there exists a compactly supported $g \in C^1(\mathbb{R})$ such that

$$\|f-g\|_{L^1(\mathbb{R})} < \varepsilon.$$