Problem Set 12

(1) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is given by

$$
f(x)=e^{-a|x|}
$$

where $a>0$. Find \hat{f}.
(2) Suppose $f \in C_{0}^{2}(\mathbb{R})$, and suppose $u=u(x, y)$ has a Fourier transform in x which is bounded on the upper half plane $\mathbb{R}_{+}^{2}=\{y>0\}$ and satisfies

$$
\begin{aligned}
\Delta u & =0 \text { in } \mathbb{R}_{+}^{2} \\
u(x, 0) & =f(x)
\end{aligned}
$$

By taking the Fourier transform in the x variable and solving the resulting ODE, find an explicit formula for u in terms of f. Compare this to the formula we obtained in the section on Green's functions.
(3) Suppose f and u are as in the previous question. Find a formula for $u_{y}(x, 0)$. (It suffices to give a formula for $\hat{u}_{y}(\xi, 0)$ in terms of \hat{f}, where the hat indicates the Fourier transform in the x variable.) The map $\Lambda: f \rightarrow u_{y}(x, 0)$ is sometimes called the Dirichlet-to-Neumann map: it maps the Dirichlet boundary data for the problem to the Neumann boundary data. What is the operator Λ^{2} - i.e., what is $\Lambda(\Lambda(f))$?
(4) Suppose $g, h \in C_{0}^{2}(\mathbb{R})$, and suppose $u=u(x, t)$ is locally bounded on the upper half plane $\mathbb{R}_{+}^{2}=\{t>0\}$ and satisfies the wave equation

$$
\begin{aligned}
\left(\partial_{t}^{2}-\partial_{x}^{2}\right) u & =0 \text { in } \mathbb{R}_{+}^{2} \\
u(x, 0) & =g(x) . \\
u_{t}(x, 0) & =0 .
\end{aligned}
$$

By taking the Fourier transform in the x variable and solving the resulting ODE, find an explicit formula for u in terms of g. Compare this to d'Alembert's formula.

