Problem Set 3

- (1) Reading: Read Section 2.2 from the note on positivity after the proof of Theorem 4 (p27) to the end of the proof of Theorem 13 (page 36).
- (2) Do problem 3,5, and 6 from section 2.5 of Evans.
- (3) (Interior gradient estimate): Show that there exists a constant c depending only on the dimension such that

$$\sup_{B(0,1/2)} |\nabla u| \le c \sup_{\partial B(0,1)} |u|$$

whenever u is harmonic in B(0, 1). Hint: Consider a function of the form $\eta^2 |\nabla u|^2 + au^2$, where a is constant, and $\eta \in C_0^2(B(0, 1))$ with $\eta \equiv 1$ in B(0, 1/2). Use question 5 from Evans.

(4) Use the previous question to show that for each $\alpha \in [0, 1]$, there exists a constant c_{α} such that if u is harmonic in B(0, 1), then

$$|u(x) - u(y)| \le c_{\alpha}|x - y|^{\alpha} \sup_{\partial B(0,1)} |u|$$

whenever $x, y \in B(0, 1/2)$.

(5) (Cacciopoli inequality): Suppose u is harmonic in Ω . Show that if $\eta \in C_0^1(\Omega)$, then

$$\int_{\Omega} \eta^2 |\nabla u|^2 \le C \int_{\Omega} |\nabla \eta|^2 u^2$$

where C depends only on Ω .

(6) Suppose u is harmonic in B(0, 1). Using the Cacciopoli inequality, show that if $0 \le r < R \le 1$, then

$$\int_{B(0,r)} |\nabla u|^2 \le \frac{C}{(R-r)^2} \int_{B(0,R)} u^2$$

for some constant C.

(7) Suppose $0 < R \leq 1$. Using the Cacciopoli inequality, show that there exists $\theta \in (0, 1)$ such that

$$\int_{B(0,R/2)} u^2 \le \theta \int_{B(0,R)} u^2$$

whenever u is harmonic in B(0, 1).

For this question you may need to use the Poincaré inequality: if Ω is a smooth bounded domain, and $v \in C^1(\Omega)$ and v = 0 on $\partial\Omega$, then there exists a constant C depending only on Ω such that

$$\int_{\Omega} |v|^2 \le C \int_{\Omega} |\nabla v|^2$$

For the remaining questions, you will need the following definition.

Definition 0.1. Let $a_{ij}, c \in \mathbb{R}$ and $b \in \mathbb{R}^n$ be constant. An operator L of the form

$$Lu = \sum_{i,j=1}^{n} a_{ij}\partial_{ij}u + b \cdot \nabla u + cu$$

is called elliptic if there exists $\lambda > 0$ such that

$$\xi \cdot A\xi > \lambda |\xi|^2$$

for any $\xi \in \mathbb{R}^n$, where A is the matrix with entries a_{ij} .

You should check that the Laplacian is an elliptic operator.

- (8) Prove the maximum principle for an elliptic operator with c = 0.
- (9) (optional) Prove the strong maximum principle for an elliptic operator with c = 0. (Note: this is much harder. Why?)