Problem Set 3

(1) Reading: Read Section 2.2 from the note on positivity after the proof of Theorem 4 (p27) to the end of the proof of Theorem 13 (page 36).
(2) Do problem 3,5, and 6 from section 2.5 of Evans.
(3) (Interior gradient estimate): Show that there exists a constant c depending only on the dimension such that

$$
\sup _{B(0,1 / 2)}|\nabla u| \leq c \sup _{\partial B(0,1)}|u|
$$

whenever u is harmonic in $B(0,1)$. Hint: Consider a function of the form $\eta^{2}|\nabla u|^{2}+a u^{2}$, where a is constant, and $\eta \in C_{0}^{2}(B(0,1))$ with $\eta \equiv 1$ in $B(0,1 / 2)$. Use question 5 from Evans.
(4) Use the previous question to show that for each $\alpha \in[0,1]$, there exists a constant c_{α} such that if u is harmonic in $B(0,1)$, then

$$
|u(x)-u(y)| \leq c_{\alpha}|x-y|^{\alpha} \sup _{\partial B(0,1)}|u|
$$

whenever $x, y \in B(0,1 / 2)$.
(5) (Cacciopoli inequality): Suppose u is harmonic in Ω. Show that if $\eta \in C_{0}^{1}(\Omega)$, then

$$
\int_{\Omega} \eta^{2}|\nabla u|^{2} \leq C \int_{\Omega}|\nabla \eta|^{2} u^{2}
$$

where C depends only on Ω.
(6) Suppose u is harmonic in $B(0,1)$. Using the Cacciopoli inequality, show that if $0 \leq r<R \leq 1$, then

$$
\int_{B(0, r)}|\nabla u|^{2} \leq \frac{C}{(R-r)^{2}} \int_{B(0, R)} u^{2}
$$

for some constant C.
(7) Suppose $0<R \leq 1$. Using the Cacciopoli inequality, show that there exists $\theta \in(0,1)$ such that

$$
\int_{B(0, R / 2)} u^{2} \leq \theta \int_{B(0, R)} u^{2}
$$

whenever u is harmonic in $B(0,1)$.

For this question you may need to use the Poincaré inequality: if Ω is a smooth bounded domain, and $v \in C^{1}(\Omega)$ and $v=0$ on $\partial \Omega$, then there exists a constant C depending only on Ω such that

$$
\int_{\Omega}|v|^{2} \leq C \int_{\Omega}|\nabla v|^{2}
$$

For the remaining questions, you will need the following definition.
Definition 0.1. Let $a_{i j}, c \in \mathbb{R}$ and $b \in \mathbb{R}^{n}$ be constant. An operator L of the form

$$
L u=\sum_{i, j=1}^{n} a_{i j} \partial_{i j} u+b \cdot \nabla u+c u
$$

is called elliptic if there exists $\lambda>0$ such that

$$
\xi \cdot A \xi>\lambda|\xi|^{2}
$$

for any $\xi \in \mathbb{R}^{n}$, where A is the matrix with entries $a_{i j}$.
You should check that the Laplacian is an elliptic operator.
(8) Prove the maximum principle for an elliptic operator with $c=0$.
(9) (optional) Prove the strong maximum principle for an elliptic operator with $c=0$. (Note: this is much harder. Why?)

