Problem Set 4

(1) Reading: Read Section 2.2 from wherever you left off until the end of the section.
(2) Do problem 7, 8, and 9 from section 2.5 of Evans.

For the remaining problems you will need the following definition. Define $N(x, y)$ to be a Neumann function for Ω if $N(x, y)$ takes the form

$$
N(x, y)=\Phi(y-x)-\psi^{x}(y)
$$

where Φ is the fundamental solution to the Laplacian, and for each $x \in \Omega$, $\psi^{x} \in C^{2}(\Omega)$ solves

$$
\begin{aligned}
\Delta \psi^{x} & =0 \text { on } \Omega \\
\partial_{\nu} \psi^{x}(y) & =\partial_{\nu} \Phi(y-x) \text { on } \partial \Omega .
\end{aligned}
$$

(3) Prove that if a Neumann function for Ω exists, then it is not unique.
(4) Prove that if a Neumann function $N(x, y)$ for Ω exists, then any solution to

$$
\begin{aligned}
\Delta u & =f \text { on } \Omega \\
\partial_{\nu} u & =g \text { on } \partial \Omega
\end{aligned}
$$

has the form

$$
u(x)=\int_{\Omega} N(x, y) f(y) d y+\int_{\partial \Omega} N(x, y) g(y) d S_{y} .
$$

(5) Using your result in the previous two questions, show that if a Neumann function for Ω exists, then

$$
\begin{aligned}
\triangle u & =f \text { on } \Omega \\
\partial_{\nu} u & =g \text { on } \partial \Omega
\end{aligned}
$$

has a solution only if

$$
\int_{\Omega} f+\int_{\partial \Omega} g=0
$$

(6) Find a Neumann function for the half space \mathbb{R}_{+}^{n}.

