Problem Set 5

(1) Reading: Read Section 2.3 from the beginning to the statement of Theorem 8 (page 59).
(2) Do problems 12, 13, 14, and 16 from section 2.5 of Evans.
(3) Let $g \in C\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$, and let $k>0$ and $v \in \mathbb{R}^{n}$ be constant. Solve the problem

$$
\begin{aligned}
u_{t}-k \triangle u+v \cdot \nabla u & =0 \text { on } \mathbb{R}^{n} \times(0, \infty) \\
u(x, 0) & =g(x)
\end{aligned}
$$

(4) Let $U \subset \mathbb{R}^{n}$ be a bounded domain with smooth boundary, and suppose $u_{t}-$ $\triangle u=0$ on $U \times(0, \infty)$ satisfies the boundary condition $\partial_{\nu} u=0$ on $\partial U \times(0, \infty)$. Show that

$$
\int_{U} u(x, t) d x
$$

is constant in time. Why does this make sense physically?

