Math 533 Sample Exam

Do at least three of the following five questions. If you complete more than three questions, your grade will be based on the best three.
(1) Let B_{1} denote the open unit ball in \mathbb{R}^{n}, centred at the origin. Let $f \in C\left(B_{1}\right)$ such that $|f(x)| \leq 1$ for $x \in B_{1}$. Assume $u \in C^{2}\left(\bar{B}_{1}\right)$ solves

$$
\begin{aligned}
\Delta u & =f \text { in } B_{1} \\
u & =0 \text { on } \partial B_{1}
\end{aligned}
$$

Prove that

$$
|u(x)| \leq \frac{1}{2 n}\left(1-|x|^{2}\right) .
$$

(2) Let $\Phi(x)$ be the fundamental solution to the Laplacian on \mathbb{R}^{2} :

$$
\Phi(x)=-\frac{1}{2 \pi} \log |x|
$$

for $x \neq 0$. Let f be a smooth compactly supported function on \mathbb{R}^{n}, and let

$$
J_{\varepsilon}=\int_{\mathbb{R}^{n} \backslash B(0, \varepsilon)} \Phi(y) \triangle_{y} f(x-y) d y .
$$

Show that

$$
\lim _{\varepsilon \rightarrow 0} J_{\varepsilon}=-f(x)
$$

(3) Let $\Omega \subset \mathbb{R}^{n}$ be a smooth bounded domain. Show that the equation

$$
\begin{aligned}
u_{t}-\Delta u & =f \text { in } \Omega \times\{t>0\} \\
u(x, 0) & =g \text { for } x \in \Omega \\
\partial_{\nu} u & =h \text { on } \partial \Omega \times\{t>0\}
\end{aligned}
$$

has at most one solution $u \in C^{2}(\bar{\Omega} \times\{t \geq 0\})$.
(4) Let $B(0,1)$ be the ball of radius 1 in \mathbb{R}^{3} centred at the origin. Suppose $u \in C^{2}\left(\mathbb{R}^{3} \times\{t \geq 0\}\right)$ solves the wave equation

$$
u_{t t}-\Delta u=v_{t t}-\Delta v=0 \text { on } \mathbb{R}^{3} \times\{t>0\}
$$

with

$$
u_{t}(x, 0)=0 \text { for all } x \in \mathbb{R}^{3}
$$

and

$$
u(x, 0)=0 \text { for all } x \in \mathbb{R}^{3} \backslash B(0,1)
$$

Show that there exists some $T>0$ such that if $u(x, t)=0$ for all $x \in$ $\mathbb{R}^{3} \backslash B(0,1)$ and $0 \leq t \leq T$, then $u \equiv 0$ on $\mathbb{R}^{3} \times\{t \geq 0\}$.
(5) Suppose $u(x, y)$ solves

$$
\begin{aligned}
u_{x} u_{y} & =u \text { for } x>0 \\
u(0, y) & =y^{2} .
\end{aligned}
$$

Solve for u.

