1. Continuity and Limits: Definitions

In the notes on the real numbers we defined a continuous function as follows.
Definition 1. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if for every open set $U \subseteq \mathbb{R}, f^{-1}(U)$ is open.

Theorem 4.3 from those notes provides an equivalent definition:
Definition 2. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if for every $p \in \mathbb{R}$ and every open interval I_{1} which contains $f(p)$, there exists an open interval I_{2} which contains p such that $f\left(I_{2}\right) \subseteq I_{1}$.

Replacing open intervals by open balls and rephrasing in terms of inequalities gives the following definition:

Definition 3. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if for every $p \in \mathbb{R}$ and every $\varepsilon>0$, there exists $\delta>0$ such that

$$
\text { if }|x-p|<\delta \text { then }|f(x)-f(p)|<\varepsilon
$$

Theorem 1.1. The above three definitions are all equivalent.
Exercise 1.2. Use Definition 3 to show that $1, x$, and x^{2} are continuous. Show that for any positive real number q, there exists a unique positive number p such that $p^{2}=q$.
Definition 4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$, and $p \in \mathbb{R}$. We say that $\lim _{x \rightarrow p} f(x)=L$ if for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
\text { if } 0<|x-p|<\delta \text { then }|f(x)-L|<\varepsilon .
$$

The limit is well defined:
Theorem 1.3. Show that if the limit exists then it is unique: i.e. if

$$
\lim _{x \rightarrow p} f(x)=L \text { and } \lim _{x \rightarrow p} f(x)=M
$$

then $L=M$.
Now we have a fourth definition of continuity!
Definition 5. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at p if

$$
\lim _{x \rightarrow p} f(x)=f(p)
$$

We say f is continuous if this holds for every $p \in \mathbb{R}$.
Examination of the definition of limit shows that only the values of $f(x)$ for x near (and not equal to) p determine the limit at p. This allows us to define the limit for functions whose domain is not all of \mathbb{R}.
Definition 6. Suppose $A \subset \mathbb{R}$ is open, and $p \in A$, and suppose $f: B \rightarrow \mathbb{R}$ where $A \backslash\{p\} \subseteq B$.

We say that $\lim _{x \rightarrow p} f(x)=L$ if for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
\text { if } 0<|x-p|<\delta \text { and } x \in B \text { then }|f(x)-L|<\varepsilon .
$$

Remark: In the spirit of the $\varepsilon-\delta$ definitions of $\lim _{x \rightarrow a} f(x)=L$, we can also give definitions for

$$
\lim _{x \rightarrow \infty} f(x)=L, \quad \lim _{x \rightarrow a} f(x)=\infty
$$

and several other variations.

2. Limit Theorems

Theorem 2.1. Suppose

$$
\lim _{x \rightarrow p} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow p} g(x)=M
$$

Then

$$
\begin{aligned}
\lim _{x \rightarrow p}(f(x)+g(x)) & =L+M, \\
\lim _{x \rightarrow p} f(x) g(x) & =L M, \\
\text { and } \quad \lim _{x \rightarrow p} \frac{1}{g(x)} & =\frac{1}{M} \quad \text { if } M \neq 0 .
\end{aligned}
$$

Remark: This shows that the sum, product, and quotient of continuous functions is continuous (as long as the denominator is nonzero, in the case of the quotient).
Theorem 2.2 (Squeeze Theorem*). Suppose $f(x) \leq g(x) \leq h(x)$ for all $x \in \mathbb{R}$, and

$$
\lim _{x \rightarrow p} f(x)=\lim _{x \rightarrow p} h(x)=L
$$

Then $\lim _{x \rightarrow p} g(x)=L$.
Theorem 2.3. Suppose $\lim _{x \rightarrow p} g(x)=L$, and f is continuous at L. Then

$$
\lim _{x \rightarrow p} f(g(x))=f(L) .
$$

3. Derivatives

Definition 7. Suppose $A \subset \mathbb{R}$ and $f: A \rightarrow \mathbb{R}$. We say f is differentiable at a if the limit

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

exists. Then we say that this limit is the derivative of f at a, and denote this by $f^{\prime}(a)$.
Theorem 3.1. If f is differentiable at a, then f is continuous at a.
Note that the converse is false: find a counterexample!
A straightforward application of the definition shows that the identity function $f(x)=x$ and the constant function $g(x)=c$ are differentiable everywhere, and their derivatives are 1 and 0 , respectively, for all x.

Now the following rules for sums, products, and quotients let us differentiate any rational function.

Theorem 3.2 (Sum, Product, and Quotient Rules). If f and g are differentiable at x, then

- $f+g$ is differentiable at x and $(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$.
- $f \cdot g$ is differentiable at x, and $(f g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$.
- If $g^{\prime}(x) \neq 0$ then $1 / g$ is differentiable at x, and $(1 / g)^{\prime}(x)=-g^{\prime}(x) / g^{2}(x)$.

Finally, we prove the chain rule. First a lemma.
Lemma 3.3. Suppose g is differentiable at a and f is differentiable at $g(a)$. Define

$$
\phi(h)= \begin{cases}\frac{f(g(a+h))-f(g(a))}{f^{\prime}(g(a))} & \text { if } g(a+h)-g(a) \neq 0 \\ f^{\prime}(g(a)) & \text { otherwise }\end{cases}
$$

Show that ϕ is continuous at 0 .
Theorem 3.4 (Chain Rule). Suppose g is differentiable at a and f is differentiable at $g(a)$. Then $f \circ g$ is differentiable at a, and

$$
(f \circ g)^{\prime}(a)=f^{\prime}(g(a)) g^{\prime}(a) .
$$

Definition 8. Let A be a subset of the domain of f. We say that $x \in A$ is a maximum point for f on A if $f(x) \geq f(y)$ for all $y \in A$. A similar definition holds for minimum point.
Theorem 3.5. Suppose f is defined on (a, b), and x is a maximum or minimum point of f on (a, b). If f is differentiable at x then $f^{\prime}(x)=0$.
Lemma 3.6 (Rolle's Theorem*). Suppose f is continuous on $[a, b]$ and differentiable on (a, b), and $f(a)=f(b)$. Then there exists $x \in(a, b)$ such that $f^{\prime}(x)=0$.
Theorem 3.7 (Mean Value Theorem*). Suppose f is continuous on $[a, b]$ and differentiable on (a, b). Then there exists $x \in(a, b)$ such that

$$
f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}
$$

Corollary 3.8. If $f^{\prime}(x)=0$ for all $x \in(a, b)$, then f is constant on (a, b).
Corollary 3.9 (Cauchy Mean Value Theorem). Suppose f is continuous on $[a, b]$ and differentiable on (a, b). Then there exists $x \in(a, b)$ such that

$$
f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}
$$

Theorem 3.10 (L'Hôpital's Rule). Suppose $\lim _{x \rightarrow p} f(x)=\lim _{x \rightarrow p} g(x)=0$ and $\lim _{x \rightarrow p} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists.
Then

$$
\lim _{x \rightarrow p} \frac{f(x)}{g(x)}=\lim _{x \rightarrow p} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

In particular the limit on the left exists.

4. Uniform Continuity

Definition 9. We say f is uniformly continuous on A if for all $\varepsilon>0$ there exists $\delta>0$ such that for all $x, p \in A$,

$$
\text { if }|x-p|<\delta \text { then }|f(x)-f(p)|<\varepsilon .
$$

Exercise 4.1. Give an example of a function that is continuous on $(0,1)$ but not uniformly continuous there.

Theorem $4.2\left(^{*}\right)$. If A is compact and f is continuous on A then f is uniformly continuous on A.

5. Integrals

Definition 10. A partition P of $[a, b]$ is a finite collection of points t_{0}, \ldots, t_{n} such that

$$
a=t_{0}<\ldots<t_{n}=b
$$

Definition 11. Suppose f is bounded on $[a, b]$, and P is a partition of $[a, b]$. The upper and lower sums of f on $[a, b]$ with respect to P are the quantities

$$
U(f, P)=\sum_{i=1}^{n} M_{i}\left(t_{i}-t_{i-1}\right) \quad \text { and } \quad L(f, P)=\sum_{i=1}^{n} m_{i}\left(t_{i}-t_{i-1}\right)
$$

where M_{i} and m_{i} are the supremum and infimum, respectively, of the sets

$$
\left\{f(x) \mid x \in\left[t_{i-1}, t_{i}\right]\right\} .
$$

Lemma 5.1. Let P and Q be partitions of $[a, b]$ such that all the points of P are also in Q. Then

$$
L(f, P) \leq L(f, Q) \quad \text { and } \quad U(f, P) \geq U(f, Q)
$$

Theorem 5.2. Let P_{1}, P_{2} be partitions of $[a, b]$. Then

$$
L\left(f, P_{1}\right) \leq U\left(f, P_{2}\right)
$$

Definition 12. Suppose f is bounded on $[a, b]$. We say f is (Riemann) integrable on $[a, b]$ if

$$
\inf _{P} U(f, P)=\sup _{P} L(f, P)
$$

and define this quantity to be the integral

$$
\int_{a}^{b} f(x) d x
$$

Exercise 5.3. Show that $f(x)=x^{2}$ is integrable on $[0,1]$. Find a function which is not integrable on $[0,1]$.
Lemma 5.4. Suppose f is bounded on $[a, b]$. Then f is Riemann integrable on $[a, b]$ if and only if for all $\varepsilon>4$, there exists a partition P of $[a, b]$ such that

$$
U(f, P)-L(f, P)<\varepsilon
$$

Theorem 5.5. Suppose f is continuous on $[a, b]$. Then f is integrable on $[a, b]$.
Theorem 5.6. Suppose f is integrable on $[a, b]$ and on $[b, c]$. Then f is integrable on $[a, c]$, and

$$
\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x
$$

Remark: This formula justifies the definition

$$
\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x
$$

Moreover, it follows from this theorem that not all integrable functions are continuous. (Why?)

Theorem 5.7. Suppose f is integrable on $[a, b]$, and c is constant. Then $c f$ is integrable on $[a, b]$, and

$$
\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x
$$

Theorem 5.8. Suppose f, g are integrable on $[a, b]$. Then $f+g$ is integrable on $[a, b]$, and

$$
\int_{a}^{b}(f+g)(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x
$$

Lemma 5.9. Suppose $m \leq f(x) \leq M$ for all $x \in[a, b]$. Then

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

Theorem 5.10 (1st Fundamental Theorem*). Suppose f is integrable on $[a, b]$ and define

$$
F(x)=\int_{a}^{x} f(t) d t
$$

If f is continuous at c then F is differentiable at c and

$$
F^{\prime}(c)=f(c)
$$

Theorem 5.11 (2nd Fundamental Theorem*). Suppose f is integrable on $[a, b]$ and $f=g^{\prime}$ for some g. Then

$$
\int_{a}^{b} f(x) d x=g(b)-g(a) .
$$

