1. CONTINUITY AND LIMITS: DEFINITIONS

In the notes on the real numbers we defined a continuous function as follows.

Definition 1. A function $f : \mathbb{R} \to \mathbb{R}$ is continuous if for every open set $U \subseteq \mathbb{R}$, $f^{-1}(U)$ is open.

Theorem 4.3 from those notes provides an equivalent definition:

Definition 2. A function $f : \mathbb{R} \to \mathbb{R}$ is continuous if for every $p \in \mathbb{R}$ and every open interval I_1 which contains f(p), there exists an open interval I_2 which contains p such that $f(I_2) \subseteq I_1$.

Replacing open intervals by open balls and rephrasing in terms of inequalities gives the following definition:

Definition 3. A function $f : \mathbb{R} \to \mathbb{R}$ is continuous if for every $p \in \mathbb{R}$ and every $\varepsilon > 0$, there exists $\delta > 0$ such that

if
$$|x - p| < \delta$$
 then $|f(x) - f(p)| < \varepsilon$.

Theorem 1.1. The above three definitions are all equivalent.

Exercise 1.2. Use Definition 3 to show that 1, x, and x^2 are continuous. Show that for any positive real number q, there exists a unique positive number p such that $p^2 = q$.

Definition 4. Let $f : \mathbb{R} \to \mathbb{R}$, and $p \in \mathbb{R}$. We say that $\lim_{x \to p} f(x) = L$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that

if
$$0 < |x - p| < \delta$$
 then $|f(x) - L| < \varepsilon$.

The limit is well defined:

Theorem 1.3. Show that if the limit exists then it is unique: i.e. if

$$\lim_{x \to p} f(x) = L \text{ and } \lim_{x \to p} f(x) = M$$

then L = M.

Now we have a fourth definition of continuity!

Definition 5. A function $f : \mathbb{R} \to \mathbb{R}$ is continuous at p if

$$\lim_{x \to p} f(x) = f(p).$$

We say f is continuous if this holds for every $p \in \mathbb{R}$.

Examination of the definition of limit shows that only the values of f(x) for x near (and not equal to) p determine the limit at p. This allows us to define the limit for functions whose domain is not all of \mathbb{R} .

Definition 6. Suppose $A \subset \mathbb{R}$ is open, and $p \in A$, and suppose $f : B \to \mathbb{R}$ where $A \setminus \{p\} \subseteq B$.

We say that
$$\lim_{x \to p} f(x) = L$$
 if for every $\varepsilon > 0$ there exists $\delta > 0$ such that
if $0 < |x - p| < \delta$ and $x \in B$ then $|f(x) - L| < \varepsilon$.

Remark: In the spirit of the $\varepsilon - \delta$ definitions of $\lim_{x \to a} f(x) = L$, we can also give definitions for

$$\lim_{x \to \infty} f(x) = L, \qquad \lim_{x \to a} f(x) = \infty,$$

and several other variations.

2. Limit Theorems

7

7.6

Theorem 2.1. Suppose

Then

$$\lim_{x \to p} f(x) = L \quad and \quad \lim_{x \to p} g(x) = M.$$
$$\lim_{x \to p} (f(x) + g(x)) = L + M,$$
$$\lim_{x \to p} f(x)g(x) = LM,$$
and
$$\lim_{x \to p} \frac{1}{g(x)} = \frac{1}{M} \quad if \ M \neq 0.$$

Remark: This shows that the sum, product, and quotient of continuous functions is continuous (as long as the denominator is nonzero, in the case of the quotient).

Theorem 2.2 (Squeeze Theorem*). Suppose $f(x) \leq g(x) \leq h(x)$ for all $x \in \mathbb{R}$, and $\lim_{x \to p} f(x) = \lim_{x \to p} h(x) = L.$

Then $\lim_{x \to p} g(x) = L$.

Theorem 2.3. Suppose $\lim_{x\to p} g(x) = L$, and f is continuous at L. Then

$$\lim_{x \to p} f(g(x)) = f(L).$$

3. Derivatives

Definition 7. Suppose $A \subset \mathbb{R}$ and $f : A \to \mathbb{R}$. We say f is differentiable at a if the limit

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

exists. Then we say that this limit is the derivative of f at a, and denote this by f'(a).

Theorem 3.1. If f is differentiable at a, then f is continuous at a.

Note that the converse is false: find a counterexample!

A straightforward application of the definition shows that the identity function f(x) = xand the constant function g(x) = c are differentiable everywhere, and their derivatives are 1 and 0, respectively, for all x.

Now the following rules for sums, products, and quotients let us differentiate any rational function.

Theorem 3.2 (Sum, Product, and Quotient Rules). If f and g are differentiable at x, then

- f + g is differentiable at x and (f + g)'(x) = f'(x) + g'(x).
- $f \cdot g$ is differentiable at x, and (fg)'(x) = f'(x)g(x) + f(x)g'(x).
- If $g'(x) \neq 0$ then 1/g is differentiable at x, and $(1/g)'(x) = -g'(x)/g^2(x)$.

Finally, we prove the chain rule. First a lemma.

Lemma 3.3. Suppose g is differentiable at a and f is differentiable at g(a). Define

$$\phi(h) = \begin{cases} \frac{f(g(a+h)) - f(g(a))}{f'(g(a))} & \text{if } g(a+h) - g(a) \neq 0\\ f'(g(a)) & \text{otherwise} \end{cases}$$

Show that ϕ is continuous at 0.

Theorem 3.4 (Chain Rule). Suppose g is differentiable at a and f is differentiable at g(a). Then $f \circ g$ is differentiable at a, and

$$(f \circ g)'(a) = f'(g(a))g'(a).$$

Definition 8. Let A be a subset of the domain of f. We say that $x \in A$ is a maximum point for f on A if $f(x) \ge f(y)$ for all $y \in A$. A similar definition holds for minimum point.

Theorem 3.5. Suppose f is defined on (a, b), and x is a maximum or minimum point of f on (a, b). If f is differentiable at x then f'(x) = 0.

Lemma 3.6 (Rolle's Theorem^{*}). Suppose f is continuous on [a, b] and differentiable on (a, b), and f(a) = f(b). Then there exists $x \in (a, b)$ such that f'(x) = 0.

Theorem 3.7 (Mean Value Theorem^{*}). Suppose f is continuous on [a, b] and differentiable on (a, b). Then there exists $x \in (a, b)$ such that

$$f'(x) = \frac{f(b) - f(a)}{b - a}.$$

Corollary 3.8. If f'(x) = 0 for all $x \in (a, b)$, then f is constant on (a, b).

Corollary 3.9 (Cauchy Mean Value Theorem). Suppose f is continuous on [a, b] and differentiable on (a, b). Then there exists $x \in (a, b)$ such that

$$f'(x) = \frac{f(b) - f(a)}{b - a}.$$

Theorem 3.10 (L'Hôpital's Rule). Suppose $\lim_{x \to p} f(x) = \lim_{x \to p} g(x) = 0$ and $\lim_{x \to p} \frac{f'(x)}{g'(x)}$ exists. Then

$$\lim_{x \to p} \frac{f(x)}{g(x)} = \lim_{x \to p} \frac{f'(x)}{g'(x)}.$$

In particular the limit on the left exists.

4. UNIFORM CONTINUITY

Definition 9. We say f is uniformly continuous on A if for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x, p \in A$,

if
$$|x - p| < \delta$$
 then $|f(x) - f(p)| < \varepsilon$.

Exercise 4.1. Give an example of a function that is continuous on (0, 1) but not uniformly continuous there.

Theorem 4.2 (*). If A is compact and f is continuous on A then f is uniformly continuous on A.

Definition 10. A partition P of [a, b] is a finite collection of points t_0, \ldots, t_n such that

$$a = t_0 < \ldots < t_n = b$$

Definition 11. Suppose f is bounded on [a, b], and P is a partition of [a, b]. The upper and lower sums of f on [a, b] with respect to P are the quantities

$$U(f,P) = \sum_{i=1}^{n} M_i(t_i - t_{i-1}) \quad and \quad L(f,P) = \sum_{i=1}^{n} m_i(t_i - t_{i-1})$$

where M_i and m_i are the supremum and infimum, respectively, of the sets

$$\{f(x)|x \in [t_{i-1}, t_i]\}$$

Lemma 5.1. Let P and Q be partitions of [a, b] such that all the points of P are also in Q. Then

$$L(f, P) \le L(f, Q)$$
 and $U(f, P) \ge U(f, Q)$.

Theorem 5.2. Let P_1 , P_2 be partitions of [a, b]. Then

$$L(f, P_1) \le U(f, P_2).$$

Definition 12. Suppose f is bounded on [a, b]. We say f is (Riemann) integrable on [a, b] if

$$\inf_{P} U(f, P) = \sup_{P} L(f, P),$$

and define this quantity to be the integral

$$\int_{a}^{b} f(x) dx.$$

Exercise 5.3. Show that $f(x) = x^2$ is integrable on [0,1]. Find a function which is not integrable on [0,1].

Lemma 5.4. Suppose f is bounded on [a, b]. Then f is Riemann integrable on [a, b] if and only if for all $\varepsilon > 4$, there exists a partition P of [a, b] such that

$$U(f,P) - L(f,P) < \varepsilon.$$

Theorem 5.5. Suppose f is continuous on [a, b]. Then f is integrable on [a, b].

Theorem 5.6. Suppose f is integrable on [a, b] and on [b, c]. Then f is integrable on [a, c], and

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx.$$

Remark: This formula justifies the definition

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx.$$

Moreover, it follows from this theorem that not all integrable functions are continuous. (Why?)

Theorem 5.7. Suppose f is integrable on [a, b], and c is constant. Then cf is integrable on [a, b], and

$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx$$

Theorem 5.8. Suppose f, g are integrable on [a, b]. Then f + g is integrable on [a, b], and

$$\int_a^b (f+g)(x)dx = \int_a^b f(x)dx + \int_a^b g(x)dx.$$

Lemma 5.9. Suppose $m \leq f(x) \leq M$ for all $x \in [a, b]$. Then

$$m(b-a) \le \int_{a}^{b} f(x)dx \le M(b-a).$$

Theorem 5.10 (1st Fundamental Theorem^{*}). Suppose f is integrable on [a, b] and define

$$F(x) = \int_{a}^{x} f(t)dt.$$

If f is continuous at c then F is differentiable at c and

$$F'(c) = f(c)$$

Theorem 5.11 (2nd Fundamental Theorem^{*}). Suppose f is integrable on [a, b] and f = g' for some g. Then

$$\int_{a}^{b} f(x)dx = g(b) - g(a).$$