
1. Continuity and Limits: Definitions

In the notes on the real numbers we defined a continuous function as follows.

Definition 1. A function f : R → R is continuous if for every open set U ⊆ R, f−1(U)
is open.

Theorem 4.3 from those notes provides an equivalent definition:

Definition 2. A function f : R → R is continuous if for every p ∈ R and every open
interval I1 which contains f(p), there exists an open interval I2 which contains p such that
f(I2) ⊆ I1.

Replacing open intervals by open balls and rephrasing in terms of inequalities gives the
following definition:

Definition 3. A function f : R → R is continuous if for every p ∈ R and every ε > 0,
there exists δ > 0 such that

if |x− p| < δ then |f(x)− f(p)| < ε.

Theorem 1.1. The above three definitions are all equivalent.

Exercise 1.2. Use Definition 3 to show that 1, x, and x2 are continuous. Show that for
any positive real number q, there exists a unique positive number p such that p2 = q.

Definition 4. Let f : R → R, and p ∈ R. We say that lim
x→p

f(x) = L if for every ε > 0

there exists δ > 0 such that

if 0 < |x− p| < δ then |f(x)− L| < ε.

The limit is well defined:

Theorem 1.3. Show that if the limit exists then it is unique: i.e. if

lim
x→p

f(x) = L and lim
x→p

f(x) = M

then L = M .

Now we have a fourth definition of continuity!

Definition 5. A function f : R→ R is continuous at p if

lim
x→p

f(x) = f(p).

We say f is continuous if this holds for every p ∈ R.

Examination of the definition of limit shows that only the values of f(x) for x near (and
not equal to) p determine the limit at p. This allows us to define the limit for functions
whose domain is not all of R.

Definition 6. Suppose A ⊂ R is open, and p ∈ A, and suppose f : B → R where
A \ {p} ⊆ B.

We say that lim
x→p

f(x) = L if for every ε > 0 there exists δ > 0 such that

if 0 < |x− p| < δ and x ∈ B then |f(x)− L| < ε.
1



2

Remark: In the spirit of the ε−δ definitions of lim
x→a

f(x) = L, we can also give definitions

for
lim
x→∞

f(x) = L, lim
x→a

f(x) =∞,
and several other variations.

2. Limit Theorems

Theorem 2.1. Suppose

lim
x→p

f(x) = L and lim
x→p

g(x) = M.

Then
lim
x→p

(f(x) + g(x)) = L+M,

lim
x→p

f(x)g(x) = LM,

and lim
x→p

1

g(x)
= 1

M
if M 6= 0.

Remark: This shows that the sum, product, and quotient of continuous functions is
continuous (as long as the denominator is nonzero, in the case of the quotient).

Theorem 2.2 (Squeeze Theorem*). Suppose f(x) ≤ g(x) ≤ h(x) for all x ∈ R, and

lim
x→p

f(x) = lim
x→p

h(x) = L.

Then lim
x→p

g(x) = L.

Theorem 2.3. Suppose lim
x→p

g(x) = L, and f is continuous at L. Then

lim
x→p

f(g(x)) = f(L).
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3. Derivatives

Definition 7. Suppose A ⊂ R and f : A→ R. We say f is differentiable at a if the limit

lim
h→0

f(a+ h)− f(a)

h

exists. Then we say that this limit is the derivative of f at a, and denote this by f ′(a).

Theorem 3.1. If f is differentiable at a, then f is continuous at a.

Note that the converse is false: find a counterexample!

A straightforward application of the definition shows that the identity function f(x) = x
and the constant function g(x) = c are differentiable everywhere, and their derivatives are
1 and 0, respectively, for all x.

Now the following rules for sums, products, and quotients let us differentiate any rational
function.

Theorem 3.2 (Sum, Product, and Quotient Rules). If f and g are differentiable at x,
then

• f + g is differentiable at x and (f + g)′(x) = f ′(x) + g′(x).
• f · g is differentiable at x, and (fg)′(x) = f ′(x)g(x) + f(x)g′(x).
• If g′(x) 6= 0 then 1/g is differentiable at x, and (1/g)′(x) = −g′(x)/g2(x).

Finally, we prove the chain rule. First a lemma.

Lemma 3.3. Suppose g is differentiable at a and f is differentiable at g(a). Define

φ(h) =

{ f(g(a+h))−f(g(a))
f ′(g(a))

if g(a+ h)− g(a) 6= 0

f ′(g(a)) otherwise

Show that φ is continuous at 0.

Theorem 3.4 (Chain Rule). Suppose g is differentiable at a and f is differentiable at
g(a). Then f ◦ g is differentiable at a, and

(f ◦ g)′(a) = f ′(g(a))g′(a).

Definition 8. Let A be a subset of the domain of f . We say that x ∈ A is a maximum
point for f on A if f(x) ≥ f(y) for all y ∈ A. A similar definition holds for minimum
point.

Theorem 3.5. Suppose f is defined on (a, b), and x is a maximum or minimum point of
f on (a, b). If f is differentiable at x then f ′(x) = 0.

Lemma 3.6 (Rolle’s Theorem*). Suppose f is continuous on [a, b] and differentiable on
(a, b), and f(a) = f(b). Then there exists x ∈ (a, b) such that f ′(x) = 0.

Theorem 3.7 (Mean Value Theorem*). Suppose f is continuous on [a, b] and differen-
tiable on (a, b). Then there exists x ∈ (a, b) such that

f ′(x) =
f(b)− f(a)

b− a
.
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Corollary 3.8. If f ′(x) = 0 for all x ∈ (a, b), then f is constant on (a, b).

Corollary 3.9 (Cauchy Mean Value Theorem). Suppose f is continuous on [a, b] and
differentiable on (a, b). Then there exists x ∈ (a, b) such that

f ′(x) =
f(b)− f(a)

b− a
.

Theorem 3.10 (L’Hôpital’s Rule). Suppose lim
x→p

f(x) = lim
x→p

g(x) = 0 and lim
x→p

f ′(x)

g′(x)
exists.

Then

lim
x→p

f(x)

g(x)
= lim

x→p

f ′(x)

g′(x)
.

In particular the limit on the left exists.

4. Uniform Continuity

Definition 9. We say f is uniformly continuous on A if for all ε > 0 there exists δ > 0
such that for all x, p ∈ A,

if |x− p| < δ then |f(x)− f(p)| < ε.

Exercise 4.1. Give an example of a function that is continuous on (0, 1) but not uniformly
continuous there.

Theorem 4.2 (*). If A is compact and f is continuous on A then f is uniformly contin-
uous on A.
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5. Integrals

Definition 10. A partition P of [a, b] is a finite collection of points t0, . . . , tn such that

a = t0 < . . . < tn = b.

Definition 11. Suppose f is bounded on [a, b], and P is a partition of [a, b]. The upper
and lower sums of f on [a, b] with respect to P are the quantities

U(f, P ) =
n∑

i=1

Mi(ti − ti−1) and L(f, P ) =
n∑

i=1

mi(ti − ti−1)

where Mi and mi are the supremum and infimum, respectively, of the sets

{f(x)|x ∈ [ti−1, ti]}.
Lemma 5.1. Let P and Q be partitions of [a, b] such that all the points of P are also in
Q. Then

L(f, P ) ≤ L(f,Q) and U(f, P ) ≥ U(f,Q).

Theorem 5.2. Let P1, P2 be partitions of [a, b]. Then

L(f, P1) ≤ U(f, P2).

Definition 12. Suppose f is bounded on [a, b]. We say f is (Riemann) integrable on [a, b]
if

inf
P
U(f, P ) = sup

P
L(f, P ),

and define this quantity to be the integral∫ b

a

f(x)dx.

Exercise 5.3. Show that f(x) = x2 is integrable on [0, 1]. Find a function which is not
integrable on [0, 1].

Lemma 5.4. Suppose f is bounded on [a, b]. Then f is Riemann integrable on [a, b] if
and only if for all ε > 4, there exists a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε.

Theorem 5.5. Suppose f is continuous on [a, b]. Then f is integrable on [a, b].

Theorem 5.6. Suppose f is integrable on [a, b] and on [b, c]. Then f is integrable on [a, c],
and ∫ c

a

f(x)dx =

∫ b

a

f(x)dx+

∫ c

b

f(x)dx.

Remark: This formula justifies the definition∫ a

b

f(x)dx = −
∫ b

a

f(x)dx.

Moreover, it follows from this theorem that not all integrable functions are continuous.
(Why?)
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Theorem 5.7. Suppose f is integrable on [a, b], and c is constant. Then cf is integrable
on [a, b], and ∫ b

a

cf(x)dx = c

∫ b

a

f(x)dx

Theorem 5.8. Suppose f, g are integrable on [a, b]. Then f + g is integrable on [a, b], and∫ b

a

(f + g)(x)dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx.

Lemma 5.9. Suppose m ≤ f(x) ≤M for all x ∈ [a, b]. Then

m(b− a) ≤
∫ b

a

f(x)dx ≤M(b− a).

Theorem 5.10 (1st Fundamental Theorem*). Suppose f is integrable on [a, b] and define

F (x) =

∫ x

a

f(t)dt.

If f is continuous at c then F is differentiable at c and

F ′(c) = f(c).

Theorem 5.11 (2nd Fundamental Theorem*). Suppose f is integrable on [a, b] and f = g′

for some g. Then ∫ b

a

f(x)dx = g(b)− g(a).


