## 1. Problem Set 1

Recall from class the following definition:
Definition 1 (Definition of $\mathbb{N}$ ). The natural numbers are a set $\mathbb{N}$, together with a successor function $S: \mathbb{N} \rightarrow \mathbb{N}$, which satisfies the following axioms:

Axiom 1: : $\mathbb{N}$ is nonempty, and contains an object called 0.
Axiom 2: : If $n, m \in \mathbb{N}$, then $S(n) \neq S(m)$.
Axiom 3: : There is no $n \in \mathbb{N}$ such that $0=S(n)$.
Axiom 4: : If $A \subset \mathbb{N}$, and $0 \in A$, and for every $a \in A, S(a) \in A$, then $A=\mathbb{N}$.
Definition 2. Suppose $m \in \mathbb{N}$. We define $0+m=m$. Moreover if we have defined $n+m$, then we define $S(n)+m=S(n+m)$.

Problem 1 (Commutativity of Addition). Suppose $n, m \in \mathbb{N}$. Recall from class that we showed that $n+0=n$.

- Show that $n+S(m)=S(n+m)$.
- Show that $n+m=m+n$.

Problem 2 (Associativity of Addition - optional). Suppose $n, m, p \in \mathbb{N}$. Then $n+(m+p)=(n+m)+p$.
Problem 3 (Cancellation Law). Suppose $n, m, p \in \mathbb{N}$, and $n+m=n+p$. Show that $m=p$.
Problem 4. Using our definition of addition as a model, define the product nm of two natural numbers $n$ and $m$.

Problem 5. Show, using your definition of multiplication, that $n m=m n$ for all natural numbers $m$ and $n$.

Definition 3. Let $n, m \in \mathbb{N}$. We define $n \leq m$ if $m=n+p$ for some $p \in \mathbb{N}$, and $n<m$ if $n \leq m$ and $n \neq m$.
Problem 6. Show that if $n, m \in \mathbb{N}$ and $n \neq m$ then $n<m$ or $m<n$.
Problem 7. Show that if $a, b, c \in \mathbb{N}$ and $a<b$ and $b<c$ then $a<c$.
Problem 8. Suppose $n, m \in \mathbb{N}$ and $n<m$. Show that the statement $m<n$ is false.
Definition 4. Let $A \subset \mathbb{N}$. We say that $a$ is a first point of $A$ if $a \in A$, and $a \leq b$ for all $b \in A$. We say that $a$ is a last point of $A$ if $a \in A$ and $b \leq a$ for all $b \in A$.

Problem 9. Show that 0 is a first point of $\mathbb{N}$.
Problem 10. Show that every subset of $\mathbb{N}$ has a first point.
Problem 11. Show that every finite subset of $\mathbb{N}$ has a last point. (Before you begin: define finite!)
Problem 12. Show that not every subset of $\mathbb{N}$ has a last point.

