1. Problem Set 1

Recall from class the following definition:

Definition 1 (Definition of \mathbb{N}). The natural numbers are a set \mathbb{N} , together with a successor function $S : \mathbb{N} \to \mathbb{N}$, which satisfies the following axioms:

Axiom 1: : \mathbb{N} is nonempty, and contains an object called 0.

Axiom 2: : If $n, m \in \mathbb{N}$, then $S(n) \neq S(m)$.

Axiom 3: : There is no $n \in \mathbb{N}$ such that 0 = S(n).

Axiom 4: : If $A \subset \mathbb{N}$, and $0 \in A$, and for every $a \in A$, $S(a) \in A$, then $A = \mathbb{N}$.

Definition 2. Suppose $m \in \mathbb{N}$. We define 0 + m = m. Moreover if we have defined n + m, then we define S(n) + m = S(n + m).

Problem 1 (Commutativity of Addition). Suppose $n, m \in \mathbb{N}$. Recall from class that we showed that n + 0 = n.

- Show that n + S(m) = S(n + m).
- Show that n + m = m + n.

Problem 2 (Associativity of Addition – optional). Suppose $n, m, p \in \mathbb{N}$. Then n + (m + p) = (n + m) + p.

Problem 3 (Cancellation Law). Suppose $n, m, p \in \mathbb{N}$, and n + m = n + p. Show that m = p.

Problem 4. Using our definition of addition as a model, define the product nm of two natural numbers n and m.

Problem 5. Show, using your definition of multiplication, that nm = mn for all natural numbers m and n.

Definition 3. Let $n, m \in \mathbb{N}$. We define $n \leq m$ if m = n + p for some $p \in \mathbb{N}$, and n < m if $n \leq m$ and $n \neq m$.

Problem 6. Show that if $n, m \in \mathbb{N}$ and $n \neq m$ then n < m or m < n.

Problem 7. Show that if $a, b, c \in \mathbb{N}$ and a < b and b < c then a < c.

Problem 8. Suppose $n, m \in \mathbb{N}$ and n < m. Show that the statement m < n is false.

Definition 4. Let $A \subset \mathbb{N}$. We say that a is a first point of A if $a \in A$, and $a \leq b$ for all $b \in A$. We say that a is a last point of A if $a \in A$ and $b \leq a$ for all $b \in A$.

Problem 9. Show that 0 is a first point of \mathbb{N} .

Problem 10. Show that every subset of \mathbb{N} has a first point.

Problem 11. Show that every finite subset of \mathbb{N} has a last point. (Before you begin: define finite!)

Problem 12. Show that not every subset of \mathbb{N} has a last point.