1. Problem Set 10

Problem 1. Suppose that f is continuous at a and there exists an open interval I containing a such that f'(x) exists for all x in $I \setminus \{a\}$. Suppose also that $\lim_{x \to a} f'(x)$ exists. Show that f'(a) exists and

$$f'(a) = \lim_{x \to a} f'(x).$$

Note that this means the only way in which the derivative can fail to be continuous is that the limit at some point does not exist. Hint: what does L'Hôpital have to do with this?

Problem 2. Suppose f'(x) > 0 for all $x \in (a, b)$. Show that f is increasing on (a, b). (What does increasing mean?)

Problem 3. Suppose f'(x) = 0. Show that f has a local minimum at x if f''(x) > 0, and moreover, that if x has a local minimum at x and f''(x) exists then $f''(x) \ge 0$.

Problem 4. Suppose $f'(x) \ge 4$ for all $x \in [0, 1]$. Show there is an interval of length 1/4 on which |f(x)| > 1.

Problem 5. Suppose f is twice differentiable on (0, 1) and continuous on [0, 1], and there exists a function g defined on (0, 1) such that

$$f''(x) + f'(x)g(x) - f(x) = 0$$

for all $x \in (0,1)$. Show that if f(0) = f(1) = 0 then f(x) = 0 for all $x \in [0,1]$.

The rest of this problem set explores inverse functions.

Definition 1. We define a function $f : A \to B$ to be one-to-one if $f(a_1) \neq f(a_2)$ whenever $a_1 \neq a_2$.

Definition 2. Given a one-to-one function $f : A \to B$, we define $f^{-1} : f(A) \to A$ by $f^{-1}(f(a)) = a$.

One needs to convince oneself that this is really a proper definition of a function.

Problem 6. Suppose $f : (a, b) \to \mathbb{R}$ is continuous and one-to-one on (a, b). Show that f is either increasing or decreasing on (a, b).

Problem 7. Suppose $f : (a,b) \to \mathbb{R}$ is continuous and one-to-one on (a,b). Show that f^{-1} is continuous.

Problem 8. Suppose f is continuous and one-to-one on an open interval containing a, and f(a) = b. Suppose moreover that f is differentiable at a. Show that f^{-1} is differentiable at b if and only if $f'(a) \neq 0$, and

$$f^{-1'}(b) = \frac{1}{f'(f^{-1}(b))}.$$

Convince yourself that you now know what $x^{1/n}$ means, where it is continuous and differentiable, and how to differentiate it!