1. Problem Set 10

Problem 1. Suppose that f is continuous at a and there exists an open interval I containing a such that $f^{\prime}(x)$ exists for all x in $I \backslash\{a\}$. Suppose also that $\lim _{x \rightarrow a} f^{\prime}(x)$ exists. Show that $f^{\prime}(a)$ exists and

$$
f^{\prime}(a)=\lim _{x \rightarrow a} f^{\prime}(x) .
$$

Note that this means the only way in which the derivative can fail to be continuous is that the limit at some point does not exist. Hint: what does L'Hôpital have to do with this?

Problem 2. Suppose $f^{\prime}(x)>0$ for all $x \in(a, b)$. Show that f is increasing on (a, b). (What does increasing mean?)

Problem 3. Suppose $f^{\prime}(x)=0$. Show that f has a local minimum at x if $f^{\prime \prime}(x)>0$, and moreover, that if x has a local minimum at x and $f^{\prime \prime}(x)$ exists then $f^{\prime \prime}(x) \geq 0$.

Problem 4. Suppose $f^{\prime}(x) \geq 4$ for all $x \in[0,1]$. Show there is an interval of length $1 / 4$ on which $|f(x)|>1$.

Problem 5. Suppose f is twice differentiable on $(0,1)$ and continuous on $[0,1]$, and there exists a function g defined on $(0,1)$ such that

$$
f^{\prime \prime}(x)+f^{\prime}(x) g(x)-f(x)=0
$$

for all $x \in(0,1)$. Show that if $f(0)=f(1)=0$ then $f(x)=0$ for all $x \in[0,1]$.
The rest of this problem set explores inverse functions.
Definition 1. We define a function $f: A \rightarrow B$ to be one-to-one if $f\left(a_{1}\right) \neq f\left(a_{2}\right)$ whenever $a_{1} \neq a_{2}$.
Definition 2. Given a one-to-one function $f: A \rightarrow B$, we define $f^{-1}: f(A) \rightarrow A$ by $f^{-1}(f(a))=a$.

One needs to convince oneself that this is really a proper definition of a function.
Problem 6. Suppose $f:(a, b) \rightarrow \mathbb{R}$ is continuous and one-to-one on (a, b). Show that f is either increasing or decreasing on (a, b).

Problem 7. Suppose $f:(a, b) \rightarrow \mathbb{R}$ is continuous and one-to-one on (a, b). Show that f^{-1} is continuous.

Problem 8. Suppose f is continuous and one-to-one on an open interval containing a, and $f(a)=b$. Suppose moreover that f is differentiable at a. Show that f^{-1} is differentiable at b if and only if $f^{\prime}(a) \neq 0$, and

$$
f^{-1^{\prime}}(b)=\frac{1}{f^{\prime}\left(f^{-1}(b)\right)}
$$

Convince yourself that you now know what $x^{1 / n}$ means, where it is continuous and differentiable, and how to differentiate it!

