1. The Last Problem Set

Problem 1. Show that if $\left\{a_{n}\right\}$ is summable then $\lim _{n \rightarrow \infty} a_{n}=0$.
Problem 2. Suppose $0 \leq a_{n}, b_{n}$ for all $n \in \mathbb{N}$, and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ exists and is non zero. Show that $\left\{a_{n}\right\}$ is summable if and only if $\left\{b_{n}\right\}$ is summable.

Problem 3. Show that the sum $\sum_{n=1}^{\infty} r^{n}$ converges if $0 \leq r<1$ and diverges if $r \geq 1$.
Problem 4. Suppose $0 \leq a_{n}$ for all $n \in \mathbb{N}$, and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=r$. Show that $\left\{a_{n}\right\}$ is summable if $r<1$ and not summable if $r>1$. Show that $r=1$ then $\left\{a_{n}\right\}$ may or may not be summable.

Problem 5. Suppose f is integrable on $[a, b]$. Show that

$$
\lim _{k \rightarrow \infty} \int_{a}^{b} f(x) \sin (k x) d x=0
$$

Problem 6. A sequence $\left\{a_{n}\right\}$ is called Cesaro summable, with Cesaro sum L, if

$$
\lim _{n \rightarrow \infty} \frac{s_{1}+\ldots+s_{n}}{n}=L
$$

Show that if a sequence is summable then it is Cesaro summable.
Problem 7. Find a sequence $\left\{a_{n}\right\}$ which is Cesaro summable, for which $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\infty$.
Problem 8. Show that the sum

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

converges for every x. Define

$$
e=\sum_{n=0}^{\infty} \frac{1}{n!}
$$

and show that e is irrational.

