1. The Last Problem Set

Problem 1. Show that if $\{a_n\}$ is summable then $\lim_{n\to\infty} a_n = 0$.

Problem 2. Suppose $0 \le a_n, b_n$ for all $n \in \mathbb{N}$, and $\lim_{n \to \infty} \frac{a_n}{b_n}$ exists and is non zero. Show that $\{a_n\}$ is summable if and only if $\{b_n\}$ is summable.

Problem 3. Show that the sum $\sum_{n=1}^{\infty} r^n$ converges if $0 \le r < 1$ and diverges if $r \ge 1$.

Problem 4. Suppose $0 \le a_n$ for all $n \in \mathbb{N}$, and $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = r$. Show that $\{a_n\}$ is summable if r < 1 and not summable if r > 1. Show that r = 1 then $\{a_n\}$ may or may not be summable.

Problem 5. Suppose f is integrable on [a, b]. Show that

$$\lim_{k \to \infty} \int_{a}^{b} f(x) \sin(kx) \, dx = 0.$$

Problem 6. A sequence $\{a_n\}$ is called Cesaro summable, with Cesaro sum L, if

$$\lim_{n \to \infty} \frac{s_1 + \ldots + s_n}{n} = L.$$

Show that if a sequence is summable then it is Cesaro summable.

Problem 7. Find a sequence $\{a_n\}$ which is Cesaro summable, for which $\lim_{n \to \infty} |a_n| = \infty$.

Problem 8. Show that the sum

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

converges for every x. Define

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$

and show that e is irrational.