1. Problem Set 7

Problem 1. Recall the set of Dedekind cuts \mathcal{D} from the last problem set. Define

$$\mathbb{Q}' = \{ \{ x \in \mathbb{Q} | x < q \} | q \in \mathbb{Q} \}.$$

Show that any open interval in \mathcal{D} contains an element of \mathbb{Q}' . We say that this means \mathbb{Q}' is dense in \mathcal{D} .

From now on we will take \mathbb{R} to be \mathcal{D} , but we will mostly ignore the Dedekind-ness of \mathbb{R} . Note that what you've shown above is that \mathbb{Q} is dense in \mathbb{R} .

In several references this is given in some way as an axiom of \mathbb{R} , but it actually follows from the previous axioms.

Problem 2. Show that the sequence $\{1/n\}$ converges to 0. Do you need to use the density of \mathbb{Q} in \mathbb{R} ?

Problem 3. Show that every convergent sequence is bounded.

Problem 4. Suppose a sequence $\{a_n\}$ is bounded above and nondecreasing: $a_n \ge a_m$ whenever n > m. Show that $\{a_n\}$ converges.

Definition 1. Suppose $\{a_n\}$ is a bounded sequence. Define new sequences

$$u_n = \sup\{a_m | m > n\} \quad and \quad l_n = \inf\{a_m | m > n\}$$

We say that

$$\limsup a_n = p \ if \ \lim_{n \to \infty} u_n = p$$

and

$$\liminf a_n = p \ if \ \lim_{n \to \infty} l_n = p.$$

Problem 5. Suppose $\{a_n\}$ is a bounded sequence. Show that $\limsup a_n$ and $\liminf a_n$ always exist.

Problem 6. Suppose $\{a_n\}$ is a bounded sequence, and $\limsup a_n = \liminf a_n = p$. Show that $\{a_n\}$ converges to p.

Problem 7. Suppose $A \subset \mathbb{R}$. Show that $p \in \overline{A}$ if and only if there exists a sequence $\{a_n\}$ such that each $a_n \in A$, and $\{a_n\}$ converges to p.