1. Problem Set 8

Problem 1. Suppose $\{a_n\}$ is a sequence of real numbers. We say that $\{a_n\}$ is a fast Cauchy sequence if there exists $M \in \mathbb{R}$ such that for all $N \in \mathbb{N}$,

$$
M > \sum_{n=1}^{N} |a_n - a_{n+1}|.
$$

Show that if $\{a_n\}$ is a fast Cauchy sequence then it is Cauchy.

Problem 2. Show that if $\{a_n\}$ is Cauchy then it has a subsequence which is fast Cauchy.

Problem 3. Let $f : \mathbb{R} \to \mathbb{R}$. We say that f is a contraction map if there exists $c \in (0,1)$ such that for all $x, y \in X$,

$$
|f(x) - f(y)| < c|x - y|.
$$

Show that if f is a contraction map and $x \in \mathbb{R}$, then the sequence

$$
x, f(x), f(f(x)), f(f(f(x))), \ldots
$$

is Cauchy.

Problem 4. Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous and a contraction map. Show that there exists $x \in \mathbb{R}$ such that $f(x) = x$. Why do you need continuity here?

Problem 5. Suppose

$$
\lim_{x \to p} f(x) = L \quad \text{and} \quad \lim_{x \to p} g(x) = M.
$$

Show that

$$
\lim_{x \to p} (f(x) + g(x)) = L + M,
$$

\n
$$
\lim_{x \to p} f(x)g(x) = LM,
$$

\nand
$$
\lim_{x \to p} \frac{1}{g(x)} = \frac{1}{M} \quad \text{if } M \neq 0.
$$

Problem 6. Suppose

$$
f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \neq \mathbb{Q}. \end{cases}
$$

Show that $\lim_{x\to a} f(x)$ does not exist, for any $a \in \mathbb{R}$.

Problem 7. Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous and $f(x) = 0$ for all $x \in \mathbb{Q}$. Show that $f(x) = 0$ for all $x \in \mathbb{R}$.

Problem 8. Show that $\lim_{x\to p} f(x) = L$ if and only if for any sequence $\{a_n\}$ in $\mathbb{R}\setminus\{p\}$ converging to p, $\{f(a_n)\}\$ converges to L.

Problem 9. In the spirit of the $\varepsilon - \delta$ definitions of $\lim_{x \to a} f(x) = L$, give definitions for

$$
\lim_{x \to \infty} f(x) = L \text{ and } \lim_{x \to a} f(x) = \infty.
$$