1. Problem Set 9

Problem 1. Suppose $f(x) \leq g(x) \leq h(x)$ for all $x \in \mathbb{R}$, and

$$\lim_{x \to p} f(x) = \lim_{x \to p} h(x) = L$$

Show that $\lim_{x \to p} g(x) = L$.

Problem 2. Suppose

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ -x & \text{otherwise.} \end{cases}$$

Show that f is continuous at 0 but not differentiable there. Convince yourself (without writing anything down) that zero is the only point at which f is continuous.

Problem 3. Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous, and f(p) > 0. Use the epsilon-delta definition of continuity to show that there exists an open interval (a,b) containing p such that f(x) > 0 for all $x \in (a,b)$. (Optional: do the same thing but using the open sets definition of continuity. Which is easier?)

Problem 4. Show that if $y \ge 0$ then there exists a unique $x \ge 0$ such that $x^2 = y$. Define $\sqrt{y} = x$. Show that the square root function is continuous at x for every x > 0.

Problem 5. Show that the square root function is differentiable at x for every x > 0, and find the derivative.

Problem 6. A function $f : A \to \mathbb{R}$ is Lipschitz if there exists C > 0 such that for all $x, y \in A$

$$|f(x) - f(y)| \le C|x - y|.$$

Show that if $f : \mathbb{R} \to \mathbb{R}$ is differentiable, and f' is continuous, then the restriction of f to [a,b] is Lipschitz.

Problem 7. Suppose $A \subset \mathbb{R}$ is open and $f : A \to \mathbb{R}$ is Lipschitz. Show that f is continuous.

Problem 8. Suppose g is differentiable at a and f is differentiable at g(a). Define

$$\phi(h) = \begin{cases} \frac{f(g(a+h)) - f(g(a))}{f'(g(a))} & \text{if } g(a+h) - g(a) \neq 0\\ f'(g(a)) & \text{otherwise} \end{cases}$$

Show that ϕ is continuous at 0.

Problem 9. Use Problem 8 to prove the chain rule.