1. Problem Set 9

Problem 1. Suppose $f(x) \leq g(x) \leq h(x)$ for all $x \in \mathbb{R}$, and

$$
\lim _{x \rightarrow p} f(x)=\lim _{x \rightarrow p} h(x)=L
$$

Show that $\lim _{x \rightarrow p} g(x)=L$.
Problem 2. Suppose

$$
f(x)= \begin{cases}x & \text { if } x \in \mathbb{Q} \\ -x & \text { otherwise }\end{cases}
$$

Show that f is continuous at 0 but not differentiable there. Convince yourself (without writing anything down) that zero is the only point at which f is continuous.
Problem 3. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, and $f(p)>0$. Use the epsilon-delta definition of continuity to show that there exists an open interval (a, b) containing p such that $f(x)>0$ for all $x \in(a, b)$. (Optional: do the same thing but using the open sets definition of continuity. Which is easier?)
Problem 4. Show that if $y \geq 0$ then there exists a unique $x \geq 0$ such that $x^{2}=y$. Define $\sqrt{y}=x$. Show that the square root function is continuous at x for every $x>0$.
Problem 5. Show that the square root function is differentiable at x for every $x>0$, and find the derivative.

Problem 6. A function $f: A \rightarrow \mathbb{R}$ is Lipschitz if there exists $C>0$ such that for all $x, y \in A$

$$
|f(x)-f(y)| \leq C|x-y|
$$

Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, and f^{\prime} is continuous, then the restriction of f to $[a, b]$ is Lipschitz.
Problem 7. Suppose $A \subset \mathbb{R}$ is open and $f: A \rightarrow \mathbb{R}$ is Lipschitz. Show that f is continuous.

Problem 8. Suppose g is differentiable at a and f is differentiable at $g(a)$. Define

$$
\phi(h)= \begin{cases}\frac{f(g(a+h))-f(g(a))}{f^{\prime}(g(a))} & \text { if } g(a+h)-g(a) \neq 0 \\ f^{\prime}(g(a)) & \text { otherwise }\end{cases}
$$

Show that ϕ is continuous at 0 .
Problem 9. Use Problem 8 to prove the chain rule.

