1. Reals: Order and Limit Points

Definition 1.1 (Provisional Definition of \mathbb{R}). The real numbers are a nonempty set \mathbb{R} together with a relation < and two operations $+ : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, which satisfy the following axioms: ???

Definition 1.2. Let X be a set. An ordering < on the set X is a relation on X, satisfying the following properties:

- (a) For all $x, y \in X$ such that $x \neq y$, either x < y or y < x.
- (b) For all $x, y \in X$, if x < y then $x \neq y$.
- (c) For all $x, y, z \in X$, if x < y and y < z then x < z.

Axiom 1: < is an ordering on \mathbb{R} .

Proposition 1.1. If x and y are points of \mathbb{R} , then x < y and y < x are not both true.

Definition 1.3. If $A \subset \mathbb{R}$, then a point $a \in A$ is a first point of A if, for every element $x \in A$, either a < x or a = x. Similarly, a point $b \in A$ is called a last point of A if, for every $x \in A$, either x < b or x = b.

Lemma 1.2. If A is a nonempty, finite subset of \mathbb{R} , then A has a first and last point.

Proposition 1.3. Suppose that A is a set of n distinct points in \mathbb{R} . Then symbols a_1, \ldots, a_n may be assigned to each point of A so that $a_1 < a_2 < \cdots < a_n$, i.e. $a_i < a_{i+1}$ for $1 \le i \le n-1$.

Definition 1.4. If $x, y, z \in \mathbb{R}$ and both x < y and y < z, then we say that y is between x and z.

Corollary 1.4. Of three distinct points, one must be between the other two.

Axiom 2: \mathbb{R} has no first or last point.

Definition 1.5. If $a, b \in \mathbb{R}$ and a < b, then the set of points between a and b is called an open interval, denoted by (a, b). The set $\{a\} \cup (a, b) \cup \{b\}$ is called a closed interval, denoted by [a, b].

Proposition 1.5. If x is a point of \mathbb{R} , then there exists an open interval (a, b) such that $x \in (a, b)$.

Definition 1.6. Let A be a nonempty subset of \mathbb{R} . A point p of \mathbb{R} is called a limit point of A if every open interval I containing p has nonempty intersection with $A \setminus \{p\}$. Explicitly, this means:

for every open interval I with $p \in I$, we have $I \cap (A \setminus \{p\}) \neq \emptyset$.

Notice that we do not require that a limit point p of A be an element of A.

Remark: Note that p is not a limit point of A if there exists an open interval (a, b) such that $p \in (a, b)$ and $(a, b) \cap A \setminus \{p\} = \emptyset$.

Proposition 1.6. If p is a limit point of A and $A \subset B$, then p is a limit point of B.

Lemma 1.7. Suppose (a, b) is an open interval. Define the exterior of (a, b) to be the set $\mathbb{R} \setminus [a, b]$. Then no point in the exterior of (a, b) is a limit point of (a, b), and no point of (a, b) is a limit point of the exterior of (a, b).

Proposition 1.8. If two open intervals have a point x in common, their intersection is an open interval containing x.

Corollary 1.9. If n open intervals have a point x in common, their intersection is an open interval containing x.

Theorem 1.10. Let $A, B \subset \mathbb{R}$. If p is a limit point of $A \cup B$, then p is a limit point of A or B.

Corollary 1.11. Let A_1, \ldots, A_n be n subsets of \mathbb{R} . Then p is a limit point of $A_1 \cup \cdots \cup A_n$ if and only if p is a limit point of at least one of the sets A_k .

Proposition 1.12. If p and q are distinct points of \mathbb{R} , then there exist disjoint open intervals I_1 and I_2 containing p and q, respectively.

Corollary 1.13. A subset of \mathbb{R} consisting of one point has no limit points.

Corollary 1.14. A finite subset $A \subset \mathbb{R}$ has no limit points.

Corollary 1.15. If $A \subset \mathbb{R}$ is finite and $x \in A$, then there exists an open interval I such that $A \cap I = \{x\}$.

Proposition 1.16. If p is a limit point of A and I is an open interval containing p, then the set $I \cap A$ is infinite.

2. Reals: Open and Closed

Definition 2.1. A subset of \mathbb{R} is closed if it contains all of its limit points.

Theorem 2.1. The sets \emptyset and \mathbb{R} are closed. Moreover a subset of \mathbb{R} containing a finite number of points is closed.

Definition 2.2. Let X be a subset of \mathbb{R} . The closure of X is the subset \overline{X} of \mathbb{R} defined by:

 $\overline{X} = X \cup \{ x \in \mathbb{R} \mid x \text{ is a limit point of } X \}.$

Proposition 2.2. $X \subset \mathbb{R}$ is closed if and only if $X = \overline{X}$.

Proposition 2.3. The closure of $X \subset \mathbb{R}$ satisfies $\overline{X} = \overline{\overline{X}}$.

Corollary 2.4. Given any subset $X \subset \mathbb{R}$, the closure \overline{X} is closed.

Definition 2.3. A subset U of \mathbb{R} is open if its complement $\mathbb{R} \setminus U$ is closed.

Theorem 2.5. Let $U \subset \mathbb{R}$. Then U is open if and only if for all $x \in U$, there exists an open interval I such that $x \in I \subset U$.

Corollary 2.6. Every open interval is open. Every complement of an open interval is closed. Moreover \emptyset and \mathbb{R} are open.

Theorem 2.7. Let U be a nonempty open set. Then U is the union of a collection of open intervals.

Theorem 2.8. Let $\{X_{\lambda}\}$ be an arbitrary collection of closed subsets of \mathbb{R} . Then the intersection $\bigcap_{\lambda} X_{\lambda}$ is closed.

Theorem 2.9. Let U_1, \ldots, U_n be a finite collection of open subsets \mathbb{R} . Then the intersection $U_1 \cap \cdots \cap U_n$ is open.

Corollary 2.10. Let $\{U_{\lambda}\}$ be an arbitrary collection of open subsets of \mathbb{R} . Then the union $\bigcup_{\lambda} U_{\lambda}$ is open. Let X_1, \ldots, X_n be a finite collection of closed subsets of \mathbb{R} . Then the union $X_1 \cup \cdots \cup X_n$ is closed.

Definition 2.4. Let X be any set. A topology on X is a collection \mathcal{T} of subsets of X that satisfy the following properties:

- (1) X and \varnothing are elements of \mathcal{T} .
- (2) The union of an arbitrary collection of sets in \mathcal{T} is also in \mathcal{T} .
- (3) The intersection of a finite number of sets in \mathcal{T} is also in \mathcal{T} .

The elements of \mathcal{T} are called the open sets of X. The set X with the structure of the topology \mathcal{T} is called a topological space¹.

¹The word *topology* comes from the Greek word *topos* ($\tau \delta \pi o \zeta$), which means "place".

3. Connectedness

Definition 3.1. A set $X \subset \mathbb{R}$ is disconnected if it can be written in the form

 $X \subset A \cup B$

where A and B are open and disjoint, and $A \cap X$, $B \cap X$ are nonempty. X is connected if it is not disconnected.

Axiom 3: \mathbb{R} is connected.

Proposition 3.1. The only subsets of \mathbb{R} that are both open and closed are \emptyset and \mathbb{R} .

Theorem 3.2. For all $x, y \in \mathbb{R}$, if x < y, then there exists $z \in \mathbb{R}$ such that z is in between x and y.

Corollary 3.3. Every open interval is infinite.

Corollary 3.4. Every point of \mathbb{R} is a limit point of \mathbb{R} .

Corollary 3.5. Every point of (a, b) is a limit point of (a, b).

Definition 3.2. Let X be a subset of \mathbb{R} . A point u is called an upper bound of X if for all $x \in X$, $x \leq u$. A point l is called a lower bound of X if for all $x \in X$, $l \leq x$. If there exists an upper bound of X, then we say that X is bounded above. If there exists a lower bound of X, then we say that X is bounded below. If X is bounded above and below, then we simply say that X is bounded.

Definition 3.3. Let X be a subset of \mathbb{R} . We say that u is the least upper bound of X and write $u = \sup X$ if:

- (1) u is an upper bound of X, and
- (2) if u' is an upper bound of X, then $u \leq u'$.

We say that l is the greatest lower bound and write $l = \inf X$ if:

- (1) l is a lower bound of X, and
- (2) if l' is a lower bound of X, then $l' \leq l$.

Lemma 3.6. Let $X \subset \mathbb{R}$ and define:

 $\Psi(X) = \{ x \in \mathbb{R} \mid x \text{ is not an upper bound of } X \}.$

Then $\Psi(X)$ is open. Define:

 $\Omega(X) = \{ x \in \mathbb{R} \mid x \text{ is not a lower bound of } X \}.$

Then $\Omega(X)$ is open.

Theorem 3.7 (*). Suppose that X is nonempty and bounded. Then $\sup X$ and $\inf X$ both exist.

Theorem 3.8. Let X be a subset of \mathbb{R} . Suppose that $\sup X$ exists and $\sup X \notin X$. Then $\sup X$ is a limit point of X. The same holds for $\inf X$.

Corollary 3.9. Both a and b are limit points of (a, b).

Corollary 3.10. Every nonempty closed and bounded set has a first point and a last point.

4. Continuity

Definition 4.1. If $f : A \to B$, and $X \subset B$ then the preimage of X is the set $f^{-1}(X) = \{a \in A | f(a) \in X\}.$

Exercise 4.1. What is the relationship between $f(f^{-1}(X))$ and X? What is the relationship between $f^{-1}(f(X))$ and X?

Lemma 4.2. Suppose $f : A \to B$, and $X, Y \subset B$. Then

$$f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$$
 and $f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$

Definition 4.2. A function $f : \mathbb{R} \to \mathbb{R}$ is continuous if for every open set $U \subset \mathbb{R}$, the preimage $f^{-1}(U)$ is open.

Theorem 4.3. $f : \mathbb{R} \to \mathbb{R}$ is continuous if and only if for all $x \in \mathbb{R}$ and every open interval I_1 containing f(x), there exists an open interval I_2 containing x such that $f(I_2) \subset I_1$.

Lemma 4.4. Suppose $f : A \to B$, and $X, Y \subset A$. Then $f(X \cap Y) \subset f(X) \cap f(Y)$.

Theorem 4.5. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous and suppose that x is a limit point of $A \subset \mathbb{R}$. Then f(x) is a limit point of f(A) or $f(x) \in f(A)$.

Theorem 4.6. Every open interval (a, b) is connected.

Theorem 4.7. Suppose that $X \subset \mathbb{R}$ is a connected subset of \mathbb{R} and $f : \mathbb{R} \to \mathbb{R}$ is continuous. Then f(X) is connected.

Corollary 4.8 (Intermediate Value Theorem). Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous, and $a, b \in \mathbb{R}$ such that a < b. Then if y is between f(a) and f(b) then there exists $c \in (a, b)$ such that f(c) = y.

5. Compactness

Definition 5.1. Let $X \subset \mathbb{R}$, and suppose $\mathcal{O} = \{U_{\lambda}\}$ is a collection of open sets in \mathbb{R} . We say \mathcal{O} is an open cover of \mathbb{R} if

$$X \subset \bigcup_{\lambda} U_{\lambda}.$$

Definition 5.2. Let X be a subset of \mathbb{R} . X is compact if for every open cover \mathcal{O} of X, there exists a finite subset $\mathcal{O}' \subset \mathcal{O}$ that is also an open cover.

Proposition 5.1. \mathbb{R} *is not compact.*

Theorem 5.2. If X is compact, then X is bounded.

Recall that ext (a, b) refers to the set $\mathbb{R} \setminus [a, b]$, and by a homework problem from problem set 2, this is an open set.

Lemma 5.3. Let $p \in \mathbb{R}$ and consider the set:

$$\mathcal{O} = \{ \text{ext} (a, b) \mid p \in (a, b) \}.$$

No finite subset of \mathcal{O} covers $\mathbb{R} \setminus \{p\}$.

Proposition 5.4. No open interval (a, b) is compact.

Theorem 5.5. If X is compact, then X is closed.

Proposition 5.6. The set [a, b] is compact.

Theorem 5.7 (Heine-Borel). Let $X \subset \mathbb{R}$. X is compact if and only if X is closed and bounded.

Theorem 5.8 (*). Suppose $X \subset \mathbb{R}$ is compact, and $f : \mathbb{R} \to \mathbb{R}$ is continuous. Then f(X) is compact.

Corollary 5.9 (Extreme Value Theorem^{*}). Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous, and [a, b] is a closed interval. Show that f[a, b] has a first point and a last point.

Theorem 5.10 (Bolzano-Weierstrass). Every bounded infinite subset of \mathbb{R} has at least one limit point.

6. Field Axioms

Definition 6.1. Suppose F is a nonempty set with two binary operations + and \cdot . We say that F is a field if it satisfies the following 10 axioms:

Field Axiom 1: (Commutativity of Addition) For all $x, y \in \mathbb{R}$, we have x + y = y + x.

Field Axiom 2: (Associativity of Addition) For all $x, y, z \in \mathbb{R}$, we have (x + y) + z = x + (y + z).

Field Axiom 3: (Additive Identity) There exists $0 \in \mathbb{R}$ such that 0 + x = x for all $x \in \mathbb{R}$.

Field Axiom 4: (Additive Inverses) For all $x \in \mathbb{R}$, there exists $y \in \mathbb{R}$ such that x + y = 0. In this case we define -x := y.

Field Axiom 5: (Commutativity of Multiplication) For all $x, y \in \mathbb{R}$, we have $x \cdot y = y \cdot x$.

Field Axiom 6: (Associativity of Multiplication) For all $x, y, z \in \mathbb{R}$, we have $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.

Field Axiom 7: (Multiplicative Identity) There exists $1 \in \mathbb{R}$ such that $1 \cdot x = x$ for all $x \in \mathbb{R}$.

Field Axiom 8: (Multiplicative Inverses) For all $x \in \mathbb{R}$ such that $x \neq 0$, there exists $y \in \mathbb{R}$ such that $x \cdot y = 1$. In this case we define $x^{-1} := y$.

Field Axiom 9: (Distributivity) For all $x, y, z \in \mathbb{R}, x \cdot (y + z) = x \cdot y + x \cdot z$.

Field Axiom 10: (Distinctiveness of Identity) $1 \neq 0$.

The fourth axiom of the real numbers is that the real numbers form a field:

Axiom 4: The real numbers, with the binary operations + and \cdot , form a field.

We are almost done with axioms for the real numbers. We just need to specify one more thing – that the field operations interact nicely with order.

Definition 6.2. We say that a field F, together with a relation <, is an ordered field, if < is an ordering on F, and

- Addition respects the ordering: if x < y, then x + z < y + z for all $z \in F$.
- Multiplication respects the ordering: if 0 < x and 0 < y, then $0 < x \cdot y$.

Axiom 5: \mathbb{R} , with the order <, and the binary operations + and \cdot , is an ordered field.

Note that \mathbb{R} contains a natural copy of \mathbb{N} :

Proposition 6.1. Define

 $\overline{7}$

 $i:\mathbb{N}\to\mathbb{R}$

by i(1) = 1 and i(n) = i(n-1) + 1. Then i is injective and i(n+m) = i(n) + i(m).

The image of \mathbb{N} under this map acts exactly like \mathbb{N} : we will refer to it as \mathbb{N} as well. This is arguably terrible notation but in practice it will turn out that this is not confusing.

Proposition 6.2. For all $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that n > x.

We can define \mathbb{Z} and \mathbb{Q} inside \mathbb{R} as well:

Definition 6.3. We define

$$\mathbb{Z} = \{ x \in \mathbb{R} | x \in \mathbb{N} \text{ or } -x \in \mathbb{N} \}$$

and

$$\mathbb{Q} = \{ pq^{-1} \in \mathbb{R} | p, q \in \mathbb{Z}, q \neq 0 \}.$$

Definition 6.4. We say that A is dense in \mathbb{R} if every open interval in \mathbb{R} contains an element of A.

Theorem 6.3. \mathbb{Q} is dense in \mathbb{R} .

Adapted from notes by John Boller, Daniele Rosso, John Lind, and Francis Chung.