
1. Reals: Order and Limit Points

Definition 1.1 (Provisional Definition of R). The real numbers are a nonempty set
R together with a relation < and two operations + : R× R→ R and · : R× R→ R,
which satisfy the following axioms: ???

Definition 1.2. Let X be a set. An ordering < on the set X is a relation on X,
satisfying the following properties:

(a) For all x, y ∈ X such that x 6= y, either x < y or y < x.
(b) For all x, y ∈ X, if x < y then x 6= y.
(c) For all x, y, z ∈ X, if x < y and y < z then x < z.

Axiom 1: < is an ordering on R.

Proposition 1.1. If x and y are points of R, then x < y and y < x are not both
true.

Definition 1.3. If A ⊂ R, then a point a ∈ A is a first point of A if, for every
element x ∈ A, either a < x or a = x. Similarly, a point b ∈ A is called a last point
of A if, for every x ∈ A, either x < b or x = b.

Lemma 1.2. If A is a nonempty, finite subset of R, then A has a first and last point.

Proposition 1.3. Suppose that A is a set of n distinct points in R. Then symbols
a1, . . . , an may be assigned to each point of A so that a1 < a2 < · · · < an, i.e. ai < ai+1

for 1 ≤ i ≤ n− 1.

Definition 1.4. If x, y, z ∈ R and both x < y and y < z, then we say that y is
between x and z.

Corollary 1.4. Of three distinct points, one must be between the other two.

Axiom 2: R has no first or last point.

Definition 1.5. If a, b ∈ R and a < b, then the set of points between a and b is
called an open interval, denoted by (a, b). The set {a}∪ (a, b)∪{b} is called a closed
interval, denoted by [a, b].

Proposition 1.5. If x is a point of R, then there exists an open interval (a, b) such
that x ∈ (a, b).

Definition 1.6. Let A be a nonempty subset of R. A point p of R is called a limit
point of A if every open interval I containing p has nonempty intersection with A\{p}.
Explicitly, this means:

for every open interval I with p ∈ I, we have I ∩ (A \ {p}) 6= ∅.

Notice that we do not require that a limit point p of A be an element of A.

Remark: Note that p is not a limit point of A if there exists an open interval (a, b)
such that p ∈ (a, b) and (a, b) ∩ A \ {p} = ∅.

Proposition 1.6. If p is a limit point of A and A ⊂ B, then p is a limit point of B.
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Lemma 1.7. Suppose (a, b) is an open interval. Define the exterior of (a, b) to be
the set R \ [a, b]. Then no point in the exterior of (a, b) is a limit point of (a, b), and
no point of (a, b) is a limit point of the exterior of (a, b).

Proposition 1.8. If two open intervals have a point x in common, their intersection
is an open interval containing x.

Corollary 1.9. If n open intervals have a point x in common, their intersection is
an open interval containing x.

Theorem 1.10. Let A,B ⊂ R. If p is a limit point of A∪B, then p is a limit point
of A or B.

Corollary 1.11. Let A1, . . . , An be n subsets of R. Then p is a limit point of A1 ∪
· · · ∪ An if and only if p is a limit point of at least one of the sets Ak.

Proposition 1.12. If p and q are distinct points of R, then there exist disjoint open
intervals I1 and I2 containing p and q, respectively.

Corollary 1.13. A subset of R consisting of one point has no limit points.

Corollary 1.14. A finite subset A ⊂ R has no limit points.

Corollary 1.15. If A ⊂ R is finite and x ∈ A, then there exists an open interval I
such that A ∩ I = {x}.

Proposition 1.16. If p is a limit point of A and I is an open interval containing p,
then the set I ∩ A is infinite.

2. Reals: Open and Closed

Definition 2.1. A subset of R is closed if it contains all of its limit points.

Theorem 2.1. The sets ∅ and R are closed. Moreover a subset of R containing a
finite number of points is closed.

Definition 2.2. Let X be a subset of R. The closure of X is the subset X of R
defined by:

X = X ∪ {x ∈ R | x is a limit point of X}.

Proposition 2.2. X ⊂ R is closed if and only if X = X.

Proposition 2.3. The closure of X ⊂ R satisfies X = X.

Corollary 2.4. Given any subset X ⊂ R, the closure X is closed.

Definition 2.3. A subset U of R is open if its complement R \ U is closed.

Theorem 2.5. Let U ⊂ R. Then U is open if and only if for all x ∈ U , there exists
an open interval I such that x ∈ I ⊂ U .

Corollary 2.6. Every open interval is open. Every complement of an open interval
is closed. Moreover ∅ and R are open.
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Theorem 2.7. Let U be a nonempty open set. Then U is the union of a collection
of open intervals.

Theorem 2.8. Let {Xλ} be an arbitrary collection of closed subsets of R. Then the
intersection

⋂
λXλ is closed.

Theorem 2.9. Let U1, . . . , Un be a finite collection of open subsets R. Then the
intersection U1 ∩ · · · ∩ Un is open.

Corollary 2.10. Let {Uλ} be an arbitrary collection of open subsets of R. Then the
union

⋃
λ Uλ is open. Let X1, . . . , Xn be a finite collection of closed subsets of R.

Then the union X1 ∪ · · · ∪Xn is closed.

Definition 2.4. Let X be any set. A topology on X is a collection T of subsets of
X that satisfy the following properties:

(1) X and ∅ are elements of T .
(2) The union of an arbitrary collection of sets in T is also in T .
(3) The intersection of a finite number of sets in T is also in T .

The elements of T are called the open sets of X. The set X with the structure of the
topology T is called a topological space1.

1The word topology comes from the Greek word topos (τ óπoζ), which means “place”.
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3. Connectedness

Definition 3.1. A set X ⊂ R is disconnected if it can be written in the form

X ⊂ A ∪B

where A and B are open and disjoint, and A∩X, B∩X are nonempty. X is connected
if it is not disconnected.

Axiom 3: R is connected.

Proposition 3.1. The only subsets of R that are both open and closed are ∅ and R.

Theorem 3.2. For all x, y ∈ R, if x < y, then there exists z ∈ R such that z is in
between x and y.

Corollary 3.3. Every open interval is infinite.

Corollary 3.4. Every point of R is a limit point of R.

Corollary 3.5. Every point of (a, b) is a limit point of (a, b).

Definition 3.2. Let X be a subset of R. A point u is called an upper bound of X if
for all x ∈ X, x ≤ u. A point l is called a lower bound of X if for all x ∈ X, l ≤ x.
If there exists an upper bound of X, then we say that X is bounded above. If there
exists a lower bound of X, then we say that X is bounded below. If X is bounded
above and below, then we simply say that X is bounded.

Definition 3.3. Let X be a subset of R. We say that u is the least upper bound of
X and write u = supX if:

(1) u is an upper bound of X, and
(2) if u′ is an upper bound of X, then u ≤ u′.

We say that l is the greatest lower bound and write l = inf X if:

(1) l is a lower bound of X, and
(2) if l′ is a lower bound of X, then l′ ≤ l.

Lemma 3.6. Let X ⊂ R and define:

Ψ(X) = {x ∈ R | x is not an upper bound of X}.
Then Ψ(X) is open. Define:

Ω(X) = {x ∈ R | x is not a lower bound of X}.
Then Ω(X) is open.

Theorem 3.7 (*). Suppose that X is nonempty and bounded. Then supX and inf X
both exist.

Theorem 3.8. Let X be a subset of R. Suppose that supX exists and supX /∈ X.
Then supX is a limit point of X. The same holds for inf X.

Corollary 3.9. Both a and b are limit points of (a, b).

Corollary 3.10. Every nonempty closed and bounded set has a first point and a last
point.
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4. Continuity

Definition 4.1. If f : A→ B, and X ⊂ B then the preimage of X is the set

f−1(X) = {a ∈ A|f(a) ∈ X}.

Exercise 4.1. What is the relationship between f(f−1(X)) and X? What is the
relationship between f−1(f(X)) and X?

Lemma 4.2. Suppose f : A→ B, and X, Y ⊂ B. Then

f−1(X ∪ Y ) = f−1(X) ∪ f−1(Y ) and f−1(X ∩ Y ) = f−1(X) ∩ f−1(Y )

Definition 4.2. A function f : R → R is continuous if for every open set U ⊂ R,
the preimage f−1(U) is open.

Theorem 4.3. f : R→ R is continuous if and only if for all x ∈ R and every open
interval I1 containing f(x), there exists an open interval I2 containing x such that
f(I2) ⊂ I1.

Lemma 4.4. Suppose f : A→ B, and X, Y ⊂ A. Then

f(X ∩ Y ) ⊂ f(X) ∩ f(Y ).

Theorem 4.5. Let f : R → R be continuous and suppose that x is a limit point of
A ⊂ R. Then f(x) is a limit point of f(A) or f(x) ∈ f(A).

Theorem 4.6. Every open interval (a, b) is connected.

Theorem 4.7. Suppose that X ⊂ R is a connected subset of R and f : R → R is
continuous. Then f(X) is connected.

Corollary 4.8 (Intermediate Value Theorem). Suppose f : R → R is continuous,
and a, b ∈ R such that a < b. Then if y is between f(a) and f(b) then there exists
c ∈ (a, b) such that f(c) = y.
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5. Compactness

Definition 5.1. Let X ⊂ R, and suppose O = {Uλ} is a collection of open sets in
R. We say O is an open cover of R if

X ⊂
⋃
λ

Uλ.

Definition 5.2. Let X be a subset of R. X is compact if for every open cover O of
X, there exists a finite subset O′ ⊂ O that is also an open cover.

Proposition 5.1. R is not compact.

Theorem 5.2. If X is compact, then X is bounded.

Recall that ext (a, b) refers to the set R \ [a, b], and by a homework problem from
problem set 2, this is an open set.

Lemma 5.3. Let p ∈ R and consider the set:

O = {ext (a, b) | p ∈ (a, b)}.
No finite subset of O covers R \ {p}.

Proposition 5.4. No open interval (a, b) is compact.

Theorem 5.5. If X is compact, then X is closed.

Proposition 5.6. The set [a, b] is compact.

Theorem 5.7 (Heine-Borel). Let X ⊂ R. X is compact if and only if X is closed
and bounded.

Theorem 5.8 (*). Suppose X ⊂ R is compact, and f : R→ R is continuous. Then
f(X) is compact.

Corollary 5.9 (Extreme Value Theorem*). Suppose f : R → R is continuous, and
[a, b] is a closed interval. Show that f [a, b] has a first point and a last point.

Theorem 5.10 (Bolzano-Weierstrass). Every bounded infinite subset of R has at
least one limit point.
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6. Field Axioms

Definition 6.1. Suppose F is a nonempty set with two binary operations + and ·.
We say that F is a field if it satisfies the following 10 axioms:

Field Axiom 1: (Commutativity of Addition) For all x, y ∈ R, we have x+ y = y+x.

Field Axiom 2: (Associativity of Addition) For all x, y, z ∈ R, we have (x + y) + z =
x + (y + z).

Field Axiom 3: (Additive Identity) There exists 0 ∈ R such that 0 + x = x for all
x ∈ R.

Field Axiom 4: (Additive Inverses) For all x ∈ R, there exists y ∈ R such that
x + y = 0. In this case we define −x := y.

Field Axiom 5: (Commutativity of Multiplication) For all x, y ∈ R, we have x·y = y·x.

Field Axiom 6: (Associativity of Multiplication) For all x, y, z ∈ R, we have (x·y)·z =
x · (y · z).

Field Axiom 7: (Multiplicative Identity) There exists 1 ∈ R such that 1 · x = x for
all x ∈ R.

Field Axiom 8: (Multiplicative Inverses) For all x ∈ R such that x 6= 0, there exists
y ∈ R such that x · y = 1. In this case we define x−1 := y.

Field Axiom 9: (Distributivity) For all x, y, z ∈ R, x · (y + z) = x · y + x · z.

Field Axiom 10: (Distinctiveness of Identity) 1 6= 0.

The fourth axiom of the real numbers is that the real numbers form a field:

Axiom 4: The real numbers, with the binary operations + and ·, form a field.

We are almost done with axioms for the real numbers. We just need to specify one
more thing – that the field operations interact nicely with order.

Definition 6.2. We say that a field F , together with a relation <, is an ordered field,
if < is an ordering on F , and

• Addition respects the ordering: if x < y, then x + z < y + z for all z ∈ F .
• Multiplication respects the ordering: if 0 < x and 0 < y, then 0 < x · y.

Axiom 5: R, with the order <, and the binary operations + and ·, is an ordered
field.

Note that R contains a natural copy of N:

Proposition 6.1. Define
i : N→ R
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by i(1) = 1 and i(n) = i(n− 1) + 1. Then i is injective and i(n + m) = i(n) + i(m).

The image of N under this map acts exactly like N: we will refer to it as N as
well. This is arguably terrible notation but in practice it will turn out that this is
not confusing.

Proposition 6.2. For all x ∈ R, there exists n ∈ N such that n > x.

We can define Z and Q inside R as well:

Definition 6.3. We define

Z = {x ∈ R|x ∈ N or − x ∈ N}
and

Q = {pq−1 ∈ R|p, q ∈ Z, q 6= 0}.

Definition 6.4. We say that A is dense in R if every open interval in R contains an
element of A.

Theorem 6.3. Q is dense in R.

Adapted from notes by John Boller, Daniele Rosso, John Lind, and Francis Chung.


