1. Sequences

Definition 1.1. A sequence is a function $a: N \to \mathbb{R}$ from the natural numbers to the real numbers.

By setting $a_n = a(n)$, we think of a sequence a as a list $a_1, a_2, a_3 \dots$ of real numbers. We use the notation $\{a_n\}_{n=1}^{\infty}$ for such a sequence, or if there is no possibility of confusion, we sometimes abbreviate this and write simply $\{a_n\}$. More generally, we also use the term sequence to refer to a function defined on $\{n \in N | n \ge n_0\}$ for any fixed $n_0 \in \mathbb{N}$. We denote this by writing $\{a_n\}_{n=n_0}^{\infty}$ for such a sequence.

Definition 1.2. We say that a sequence $\{a_n\}$ converges to a point $p \in \mathbb{R}$ if for every open interval I containing p, there exists $N \in \mathbb{N}$ such that if $n \geq N$, then $a_n \in I$.

If $\{a_n\}$ converges to p, we write this as:

$$\lim_{n\to\infty} a_n = p,$$

and call p the limit of $\{a_n\}$. If $\{a_n\}$ does not converge to any point p, we call it divergent.

Remark: Note that if a sequence $\{a_n\}$ converges to p, then any region containing p contains all but finitely many terms in the sequence.

Theorem 1.1. Suppose that

$$\lim_{n\to\infty} a_n = p \quad and \quad \lim_{n\to\infty} a_n = p'.$$

Then p = p'. In other words, limits of sequences are unique.

Theorem 1.2 (*). Suppose $\lim_{n\to\infty} a_n = p$ and $f: \mathbb{R} \to \mathbb{R}$ is continuous. Then $\{f(a_n)\}$ converges to f(p).

Sometimes divergent sequences have points that behave like limits, but are not necessarily unique:

Definition 1.3. A point $p \in \mathbb{R}$ is an accumulation point of $\{a_n\}$ if for every open interval I containing p, there exists infinitely many $n \in \mathbb{N}$ with $a_n \in I$.

Exercise 1.3. Construct a sequence with two distinct accumulation points. Construct a sequence with infinitely many accumulation points. Construct a sequence with no accumulation points.

Theorem 1.4. Suppose that $\lim_{n\to\infty} a_n = p$. Then p is the only accumulation point of the sequence $\{a_n\}$.

Definition 1.4. Let (a_n) be a sequence. A subsequence of $\{a_n\}$ is a sequence b defined by the composition $b = a \circ i : \mathbb{N} \to \mathbb{R}$, where $i : \mathbb{N} \to \mathbb{N}$ is an increasing function. (By increasing, we mean that i has the property that if n < m, then i(n) < i(m).)

If we let $n_k = i(k) \in \mathbb{N}$, we can write $b_k = a_{n_k}$, so that $\{b_n\}$ is the sequence b_1, b_2, b_3, \ldots , which is equal to the sequence $a_{n_1}, a_{n_2}, a_{n_3}, \ldots$, where $n_1 < n_2 < n_3 < \cdots$.

Exercise 1.5. Construct a divergent sequence with a subsequence which converges.

Theorem 1.6. If $\{a_n\}$ converges to p, then so does any of its subsequences.

Theorem 1.7. Let $\{a_n\}$ be a sequence and suppose that there exists a subsequence $(b_k = a_{n_k})$ that converges to p. Then p is an accumulation point of (a_n) .

Lemma 1.8. Let $p \in [a,b]$ and define $I_k^p = (p-1/k, p+1/k)$. Then $\cap_{k \in \mathbb{N}} I_k^p = \{p\}$, and moreover for any (a,b) containing p, there exists $K \in \mathbb{N}$ such that for all k > K, $I_k^p \subset (a,b)$.

Theorem 1.9. p is an accumulation point of $\{a_n\}$ if and only if there exists a subsequence b_k converging to p.

Definition 1.5. A sequence $\{a_n\}$ is bounded if the set of all a_n is bounded. Similar definitions apply for bounded above and bounded below.

Proposition 1.10. Suppose $\{a_n\}$ is nondecreasing (meaning that $a_n \leq a_{n+1}$ for each n) and bounded above. Then $\{a_n\}$ converges.

Theorem 1.11. Suppose $\{a_n\}$ converges. Then $\{a_n\}$ is bounded.

Theorem 1.12 (Bolzano-Weierstrass*). Every bounded sequence has a convergent subsequence.

2. Metric (Re)Definitions and Cauchy sequences

Theorem 2.1. A sequence $\{a_n\}$ converges to p if and only if for all $\varepsilon > 0$ there exists N such that for n > N,

$$|a_n - p| < \varepsilon.$$

Remark: One possible exercise is to prove the theorems of the previous section using this definition.

Definition 2.1. A sequence $\{a_n\}$ is Cauchy if for all $\varepsilon > 0$ there exists N such that for all n, m > N,

$$|a_n - a_m| < \varepsilon$$
.

Lemma 2.2. Suppose $\{a_n\}$ is Cauchy and a subsequence of $\{a_n\}$ converges to p. Then $\{a_n\}$ converges to p.

Lemma 2.3. If $\{a_n\}$ is Cauchy then $\{a_n\}$ is bounded.

Theorem 2.4 (*). A sequence $\{a_n\}$ is Cauchy if and only if it converges.

3. Series

Definition 3.1. Consider a sequence $\{a_n\}$. We define the n^{th} partial sum of $\{a_n\}$ by

$$s_n = a_1 + \ldots + a_n.$$

We say that $\{a_n\}$ is summable (or $\sum_{n=1}^{\infty} a_n$ converges) if $\{s_n\}$ converges, and then we define

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n.$$

Exercise 3.1. Convince yourself that this definition is sensible. Prove that if $\{a_n\}$ and $\{b_n\}$ are summable then so is $\{a_n + b_n\}$, and

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n.$$

Proposition 3.2. If $\{a_n\}$ is summable then $\lim_{n\to\infty} a_n = 0$. Note that the converse is false (why?).

Proposition 3.3. Suppose $\{a_n\}$ is nonnegative and the sequence of its partial sums $\{s_n\}$ is bounded. Then $\{a_n\}$ is summable.

Theorem 3.4 (Comparison Test). Suppose $0 \le a_n \le b_n$ for all $n \in \mathbb{N}$, and $\{b_n\}$ is summable. Then $\{a_n\}$ is summable.

Theorem 3.5. Suppose $0 \le a_n, b_n$ for all $n \in \mathbb{N}$, and $\lim_{n \to \infty} \frac{a_n}{b_n}$ exists and is non zero. Then $\{a_n\}$ is summable if and only if $\{b_n\}$ is summable.

Lemma 3.6. The sum $\sum_{n=1}^{\infty} r^n$ converges if $0 \le r < 1$ and diverges if $r \ge 1$.

Theorem 3.7 (Ratio Test*). Suppose $0 \le a_n$ for all $n \in \mathbb{N}$, and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = r$. Then $\{a_n\}$ is summable if r < 1 and not summable if r > 1. If r = 1 then $\{a_n\}$ may or may not be summable.

Theorem 3.8 (Integral Test). Suppose f is positive, integrable, and decreasing on [1, x], for any x > 1, and $a_n = f(n)$. Then $\{a_n\}$ is summable if and only if

$$\lim_{x \to \infty} \int_{1}^{x} f(t)dt$$

exists.

Theorem 3.9. Suppose $\sum_{n=1}^{\infty} |a_n|$ converges. Then $\sum_{n=1}^{\infty} a_n$ converges.

Remark: If $\sum_{n=1}^{\infty} |a_n|$ converges then $\sum_{n=1}^{\infty} a_n$ is said to converge absolutely. It is possible for

a series to converge but not absolutely – the alternating harmonic series $1 - 1/2 + 1/3 - 1/4 + \dots$ is a good example. However, it is possible to show that such a series can be rearranged to converge to any number you want – which is terribly depraved behaviour. Mostly we would like our series to converge absolutely if we can arrange it.

4. Sequences of Functions

Definition 4.1. Suppose $f_n, f: A \to \mathbb{R}$. We say that f_n converge to f pointwise on A if $\lim_{n \to \infty} f_n(x) = f(x)$

for each $x \in A$.

Definition 4.2. Suppose $f_n, f: A \to \mathbb{R}$. We say that f_n converge to f uniformly on A if for every $\varepsilon > 0$ there exists N such that for all n > N and $x \in A$,

$$|f_n(x) - f(x)| < \varepsilon.$$

Exercise 4.1. Give an example of a sequence of functions that converges pointwise on [a,b] but not uniformly.

Theorem 4.2 (*). Suppose $f_n: A \to \mathbb{R}$ are continuous and $f_n \to f$ uniformly on A. Then f is continuous on A.

Theorem 4.3. Suppose $f_n, f: [a, b] \to \mathbb{R}$ are integrable and $f_n \to f$ uniformly on [a, b]. Then

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx.$$

Theorem 4.4. Suppose $f_n, f:(a,b) \to \mathbb{R}$, $f_n \to f$ pointwise, and each f_n is differentiable, and $f'_n \to f$ uniformly on (a,b). Then f is differentiable on [a,b], and

$$f'(x) = \lim_{n \to \infty} f'_n(x)$$

for all $x \in (a, b)$.