1. Sequences

Definition 1.1. A sequence is a function $a: N \rightarrow \mathbb{R}$ from the natural numbers to the real numbers.

By setting $a_{n}=a(n)$, we think of a sequence a as a list $a_{1}, a_{2}, a_{3} \ldots$ of real numbers. We use the notation $\left\{a_{n}\right\}_{n=1}^{\infty}$ for such a sequence, or if there is no possibility of confusion, we sometimes abbreviate this and write simply $\left\{a_{n}\right\}$. More generally, we also use the term sequence to refer to a function defined on $\left\{n \in N \mid n \geq n_{0}\right\}$ for any fixed $n_{0} \in \mathbb{N}$. We denote this by writing $\left\{a_{n}\right\}_{n=n_{0}}^{\infty}$ for such a sequence.
Definition 1.2. We say that a sequence $\left\{a_{n}\right\}$ converges to a point $p \in \mathbb{R}$ if for every open interval I containing p, there exists $N \in \mathbb{N}$ such that if $n \geq N$, then $a_{n} \in I$.

If $\left\{a_{n}\right\}$ converges to p, we write this as:

$$
\lim _{n \rightarrow \infty} a_{n}=p,
$$

and call p the limit of $\left\{a_{n}\right\}$. If $\left\{a_{n}\right\}$ does not converge to any point p, we call it divergent.
Remark: Note that if a sequence $\left\{a_{n}\right\}$ converges to p, then any region containing p contains all but finitely many terms in the sequence.

Theorem 1.1. Suppose that

$$
\lim _{n \rightarrow \infty} a_{n}=p \quad \text { and } \quad \lim _{n \rightarrow \infty} a_{n}=p^{\prime}
$$

Then $p=p^{\prime}$. In other words, limits of sequences are unique.
Theorem 1.2 $\left(^{*}\right)$. Suppose $\lim _{n \rightarrow \infty} a_{n}=p$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Then $\left\{f\left(a_{n}\right)\right\}$ converges to $f(p)$.

Sometimes divergent sequences have points that behave like limits, but are not necessarily unique:
Definition 1.3. A point $p \in \mathbb{R}$ is an accumulation point of $\left\{a_{n}\right\}$ if for every open interval I containing p, there exists infinitely many $n \in \mathbb{N}$ with $a_{n} \in I$.

Exercise 1.3. Construct a sequence with two distinct accumulation points. Construct a sequence with infinitely many accumulation points. Construct a sequence with no accumulation points.

Theorem 1.4. Suppose that $\lim _{n \rightarrow \infty} a_{n}=p$. Then p is the only accumulation point of the sequence $\left\{a_{n}\right\}$.
Definition 1.4. Let $\left(a_{n}\right)$ be a sequence. A subsequence of $\left\{a_{n}\right\}$ is a sequence b defined by the composition $b=a \circ i: \mathbb{N} \rightarrow \mathbb{R}$, where $i: \mathbb{N} \rightarrow \mathbb{N}$ is an increasing function. (By increasing, we mean that i has the property that if $n<m$, then $i(n)<i(m)$.)

If we let $n_{k}=i(k) \in \mathbb{N}$, we can write $b_{k}=a_{n_{k}}$, so that $\left\{b_{n}\right\}$ is the sequence $b_{1}, b_{2}, b_{3}, \ldots$, which is equal to the sequence $a_{n_{1}}, a_{n_{2}}, a_{n_{3}}, \ldots$, where $n_{1}<n_{2}<n_{3}<\cdots$.
Exercise 1.5. Construct a divergent sequence with a subsequence which converges.

Theorem 1.6. If $\left\{a_{n}\right\}$ converges to p, then so does any of its subsequences.
Theorem 1.7. Let $\left\{a_{n}\right\}$ be a sequence and suppose that there exists a subsequence $\left(b_{k}=\right.$ $\left.a_{n_{k}}\right)$ that converges to p. Then p is an accumulation point of $\left(a_{n}\right)$.
Lemma 1.8. Let $p \in[a, b]$ and define $I_{k}^{p}=(p-1 / k, p+1 / k)$. Then $\cap_{k \in \mathbb{N}} I_{k}^{p}=\{p\}$, and moreover for any (a, b) containing p, there exists $K \in \mathbb{N}$ such that for all $k>K$, $I_{k}^{p} \subset(a, b)$.
Theorem 1.9. p is an accumulation point of $\left\{a_{n}\right\}$ if and only if there exists a subsequence b_{k} converging to p.

Definition 1.5. A sequence $\left\{a_{n}\right\}$ is bounded if the set of all a_{n} is bounded. Similar definitions apply for bounded above and bounded below.
Proposition 1.10. Suppose $\left\{a_{n}\right\}$ is nondecreasing (meaning that $a_{n} \leq a_{n+1}$ for each n) and bounded above. Then $\left\{a_{n}\right\}$ converges.

Theorem 1.11. Suppose $\left\{a_{n}\right\}$ converges. Then $\left\{a_{n}\right\}$ is bounded.
Theorem 1.12 (Bolzano-Weierstrass*). Every bounded sequence has a convergent subsequence.

2. Metric (Re)Definitions and Cauchy sequences

Theorem 2.1. A sequence $\left\{a_{n}\right\}$ converges to p if and only if for all $\varepsilon>0$ there exists N such that for $n>N$,

$$
\left|a_{n}-p\right|<\varepsilon .
$$

Remark: One possible exercise is to prove the theorems of the previous section using this definition.

Definition 2.1. A sequence $\left\{a_{n}\right\}$ is Cauchy if for all $\varepsilon>0$ there exists N such that for all $n, m>N$,

$$
\left|a_{n}-a_{m}\right|<\varepsilon .
$$

Lemma 2.2. Suppose $\left\{a_{n}\right\}$ is Cauchy and a subsequence of $\left\{a_{n}\right\}$ converges to p. Then $\left\{a_{n}\right\}$ converges to p.
Lemma 2.3. If $\left\{a_{n}\right\}$ is Cauchy then $\left\{a_{n}\right\}$ is bounded.
Theorem 2.4 $\left(^{*}\right)$. A sequence $\left\{a_{n}\right\}$ is Cauchy if and only if it converges.

3. SERIES

Definition 3.1. Consider a sequence $\left\{a_{n}\right\}$. We define the $n^{\text {th }}$ partial sum of $\left\{a_{n}\right\}$ by

$$
s_{n}=a_{1}+\ldots+a_{n}
$$

We say that $\left\{a_{n}\right\}$ is summable (or $\sum_{n=1}^{\infty} a_{n}$ converges) if $\left\{s_{n}\right\}$ converges, and then we define

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}
$$

Exercise 3.1. Convince yourself that this definition is sensible. Prove that if $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are summable then so is $\left\{a_{n}+b_{n}\right\}$, and

$$
\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}
$$

Proposition 3.2. If $\left\{a_{n}\right\}$ is summable then $\lim _{n \rightarrow \infty} a_{n}=0$. Note that the converse is false (why?).

Proposition 3.3. Suppose $\left\{a_{n}\right\}$ is nonnegative and the sequence of its partial sums $\left\{s_{n}\right\}$ is bounded. Then $\left\{a_{n}\right\}$ is summable.

Theorem 3.4 (Comparison Test). Suppose $0 \leq a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$, and $\left\{b_{n}\right\}$ is summable. Then $\left\{a_{n}\right\}$ is summable.
Theorem 3.5. Suppose $0 \leq a_{n}, b_{n}$ for all $n \in \mathbb{N}$, and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ exists and is non zero. Then $\left\{a_{n}\right\}$ is summable if and only if $\left\{b_{n}\right\}$ is summable.
Lemma 3.6. The sum $\sum_{n=1}^{\infty} r^{n}$ converges if $0 \leq r<1$ and diverges if $r \geq 1$.
Theorem 3.7 (Ratio Test*). Suppose $0 \leq a_{n}$ for all $n \in \mathbb{N}$, and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=r$. Then $\left\{a_{n}\right\}$ is summable if $r<1$ and not summable if $r>1$. If $r=1$ then $\left\{a_{n}\right\}$ may or may not be summable.

Theorem 3.8 (Integral Test). Suppose f is positive, integrable, and decreasing on $[1, x]$, for any $x>1$, and $a_{n}=f(n)$. Then $\left\{a_{n}\right\}$ is summable if and only if

$$
\lim _{x \rightarrow \infty} \int_{1}^{x} f(t) d t
$$

exists.
Theorem 3.9. Suppose $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges. Then $\sum_{n=1}^{\infty} a_{n}$ converges.

Remark: If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges then $\sum_{n=1}^{\infty} a_{n}$ is said to converge absolutely. It is possible for a series to converge but not absolutely - the alternating harmonic series $1-1 / 2+1 / 3-$ $1 / 4+\ldots$ is a good example. However, it is possible to show that such a series can be rearranged to converge to any number you want - which is terribly depraved behaviour. Mostly we would like our series to converge absolutely if we can arrange it.

4. Sequences of Functions

Definition 4.1. Suppose $f_{n}, f: A \rightarrow \mathbb{R}$. We say that f_{n} converge to f pointwise on A if

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x)
$$

for each $x \in A$.
Definition 4.2. Suppose $f_{n}, f: A \rightarrow \mathbb{R}$. We say that f_{n} converge to f uniformly on A if for every $\varepsilon>0$ there exists N such that for all $n>N$ and $x \in A$,

$$
\left|f_{n}(x)-f(x)\right|<\varepsilon .
$$

Exercise 4.1. Give an example of a sequence of functions that converges pointwise on [a,b] but not uniformly.

Theorem 4.2 (*). Suppose $f_{n}: A \rightarrow \mathbb{R}$ are continuous and $f_{n} \rightarrow f$ uniformly on A. Then f is continuous on A.
Theorem 4.3. Suppose $f_{n}, f:[a, b] \rightarrow \mathbb{R}$ are integrable and $f_{n} \rightarrow f$ uniformly on $[a, b]$. Then

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b} f(x) d x
$$

Theorem 4.4. Suppose $f_{n}, f:(a, b) \rightarrow \mathbb{R}, f_{n} \rightarrow f$ pointwise, and each f_{n} is differentiable, and $f_{n}^{\prime} \rightarrow f$ uniformly on (a, b). Then f is differentiable on $[a, b]$, and

$$
f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)
$$

for all $x \in(a, b)$.

